Proactive Through-Life Management of Bridges

Presented by: Mike Bartholomew, PE
CH2M HILL

AASHTO Sub-Committee on Bridges & Structures Meeting
T-9 – Technical Committee for Bridge Preservation
T-18 – Technical Committee for Bridge Management, Evaluation & Rehabilitation
May 24-27, 2010
Sacramento, CA
Discussion Topics

- Current US Bridge Management Practice
- Proactive Through-Life Management
 - Service Life Design
 - Construction
 - In-Service Maintenance & Inspection
 - Rehabilitation & Preservation
 - Dismantling Plan
- Bridge Inventory Management Tools
 - Birth Certificate
 - Life Rating
- Planning, Funding & Sustainability
Why Am I Interested in Bridge Management?

- Unable to Adequately Respond to:
 - We’re designing bridges to last 75 years, aren’t we?
 - Design bridge for 100 year life span.
 - Explain how you will achieve the design service life of the structure.
 - We just need to get 5-10 more years of use. Design the repair for that.

- Pass What I’ve Learned on to Others
fédération internationale du béton (The International Federation for Structural Concrete)

– Writing new Model Code to include Service Life Design
– Publication of 1st draft scheduled for:

The Third International fib Congress & PCI Convention

– Washington, DC
– May 29 to June 3, 2010
Some key objectives of Commission

- Probabilistic performance based service life design.
- Inspection, assessment and performance monitoring.
- Development and validation of deterioration mechanisms.

Task Group 5.10: Through-Life Management
Through-Life Management

- Integrating All Stages in the Life of a Structure
 - Design
 - Construction
 - In-Service Maintenance & Inspection
 - Intervention (Repair & Rehabilitation)
 - Dismantling

- Future Oriented toward Sustainable, Life Cycle Thinking
Current US Bridge Management – Reactive Strategy

- Routine Inspections rely primarily on Visual Observations
- No deterioration observed
 - No actions taken
- Observed deterioration
 - In-depth inspection
 - Assessment to determine repair type
 - Repairs based on available funds
Disadvantages of Reactive Strategy

- When deterioration is observed on surface, the degree of damage is well advanced
- Possibility for intervention with preventative maintenance has passed
- Repairs are extensive and expensive
Disadvantages of Reactive Strategy

- Funding not readily available for unplanned repairs, resulting in...
- Delays in performing the needed repairs, which increases...
 - Cost
 - Negative Public Perception
- Prompts questions without good answers
A reflection upon problems and their solutions

“We can’t solve problems by using the same type of thinking we used when we created them!”

Albert Einstein
Proactive Bridge Management

- Based on knowledge of how materials deteriorate with time
- Monitoring performance against predicted behavior
 - through testing sufficiently in advance of initiation of visual damage
- Part of overall concept of Through-Life Management of Structures
Service Life Design Principles

- **Deterioration**
 - Materials deteriorate at a unique rate, depending on exposure conditions

- **Durability Resistance**
 - Function of quality of concrete cover
 - Cover depth over reinforcement
Deterioration Models

Deterioration Models / Limit States

Events related to the service life.

- **1** Depassivation
- **2** Cracking
- **3** Spalling
- **4** Collapse

Initiation → Propagation
Service Life Design Procedure

- Establishing Life Expectancy
- Identifying
 - Environmental Exposure Conditions
 - Deterioration Mechanisms
 - Material Resistance to Deterioration
- Establishing Mathematical Modeling Parameters to Predict Deterioration
- Setting Acceptable Damage Limits
Service Life (Durability) Design

- Establishes design procedures
 - to Resist Deterioration
 - from Environmental Actions
 - by Mathematical Modeling
Establishing Life Expectancy

- 50, 75, 100, 150 years...

- Expected Service Life is based on
 - Owner’s desires and expectations

- Actual Service Life will depend on
 - Exposure conditions of structure
 - Quality of materials, design and construction
 - Level of maintenance performed
Exposure Conditions
Deterioration Mechanisms

- Reinforced Concrete
 - Chloride Induced Corrosion (Seawater, de-icing salts)
 - Carbonation Induced Corrosion (Normal CO₂ from atmosphere and RH from 60% to 80%)
Chloride Induced Corrosion Models

- **Fick’s 2nd Law Models Time to \textit{Initiate} Corrosion in Uncracked Concrete (Cracks < 0.3 mm or 0.012\textquotedbl)\)**

\[
C(x, t) = C_0 + (C_s - C_0) \cdot \left(1 - \text{erf}\left(\frac{x}{2 \cdot \sqrt{D_{\text{app,C}} \cdot t}}\right)\right) \leq C_{\text{crit}}
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(x,t)</td>
<td>Chloride concentration at depth & time</td>
<td>kg/m3</td>
</tr>
<tr>
<td>x, t</td>
<td>Depth from surface / time</td>
<td>mm, yr</td>
</tr>
<tr>
<td>\text{erf}</td>
<td>Mathematical error function</td>
<td>-</td>
</tr>
<tr>
<td>C_{\text{crit}}</td>
<td>Critical chloride content (to initiate corrosion)</td>
<td>kg/m3</td>
</tr>
<tr>
<td>C_0</td>
<td>Initial chloride content of the concrete</td>
<td>kg/m3</td>
</tr>
<tr>
<td>C_s</td>
<td>Chloride concentration at surface</td>
<td>kg/m3</td>
</tr>
<tr>
<td>D_{\text{app,C}}</td>
<td>Apparent coefficient of chloride diffusion in concrete</td>
<td>mm2/yr</td>
</tr>
</tbody>
</table>
New Design Considerations

- Exposure Classes & Parameters
- Specifying Material Durability Properties
 - Concrete Coefficient of Chloride Diffusion (permeability)
 - Reinforcement Critical Chloride Content
- Defining Maintenance & Inspection Schedule & Work Items
Example Service Life Designed Structures

- Confederation Bridge, PEI, Canada
 - 100 yrs – completed 1997
Confederation Bridge Design

Exposures 2-4
Tidal, Splash & Spray Zones (most critical)

\[C_s, \text{ Chloride Concentration at Surface} = 17.7 \text{ kg/m}^3 \]
Confederation Bridge Design

- **High Performance Concrete (HPC)**
 - Cement 400 kg/m3
 - Silica fume 50 kg/m3
 - $D_{app,c}$, Apparent Coeff. of Chloride Diffusion $= 4.8 \times 10^{-13}$ m2/sec $= 15.1$ mm2/yr
 - C_0, Initial Chloride Content $= 0$ kg/m3

- **Plain Reinforcing (with electrical connectivity for possible future cathodic protection)**
 - C_{crit}, Critical Chloride Content $= 0.4\%$ of cement $= 1.6$ kg/m3
Chloride Content vs. Time – at Various Cover Depths

Chloride Content, kg/m³

Time, yrs

50 mm

75 mm

100 mm

C_{crit}
Chloride Content vs. Depth – at Various Structure Ages

Chloride Content, kg/m3

Depth, mm

C_{crit}

C_s

10 yr

50 yr

100 yr

120 yr
Construction

- Most important stage for achieving the target service life of structure
- Deviations from intended design parameters are inevitable
- Documentation of actual constructed material properties and geometry – Birth Certificate
Construction Monitoring Issues

- Concrete Cover Mapping
 - Cover Meters
 - Pachometers

- Concrete Durability Property Testing
Concrete Durability Testing

- Bulk Diffusion Test (ASTM C1556)
- Rapid Chloride Permeability Test (RCPT) - AASHTO T 277 (ASTM C1202)
- 90 Day Salt Ponding Method - AASHTO T 259 (ASTM C1543)
- Rapid Migration Test (RMT) - AASHTO TP 64-03
In-Service Planning

- Maintenance, Inspection and Monitoring Tasks and Schedules established during design
- Tailored specifically to the structure
- Creates awareness for potential damage susceptible details
In-Service Maintenance Plan

- Written Plan defining routine tasks
 - flush drainage piping
 - remove vegetation
 - etc.
- Identifies schedule for replaceable or serviceable items
 - Expansion Joint Seals
 - Coatings & Sealers
In-Service Maintenance Plan

- Flexible for modifying Activities & Schedule based on observed performance
Inspection & Monitoring Plan

- Initial (End of Construction)
 - Birth Certificate documentation
- Routine Inspections (current ~ 2 yrs)
- Special Inspections (Scour, FCM)
- Damage (EQ, Flood, Fire, Collision)
- In-Depth Monitoring (~ 10-20 yr)
 - Chloride penetration tests
 - Depth of Carbonation tests
In-Depth Monitoring Plan

Chloride penetration tests

```
Chloride Content, kg/m³

10 yr  50 yr  100 yr  120 yr

C_{crit}

* - actual (10 yr)
```
Life Rating

- Compares actual behavior against performance anticipated in design
- Facilitates on-going (through-life) evaluation of remaining service life
Intervention

Scheduled Major Repairs
- Components not economically feasible to achieve full service life
 - Deck Overlay
 - Deck Replacement

- Implement pre-planned Cathodic Protection system

- Chloride Extraction Techniques
Dismantling

- Final Step in Through-Life Plan
- Structures designed for 75+ yrs service life will outlive designers
- Provide opportunity to capture designer’s knowledge
Dismantling

- Demolition Plan should identify
 - List of Hazardous Materials used
 - List of Recyclable Materials used
 - Material Disposal Strategies
 - Special Demolition Details required
 (Post-tensioning)
 - Details to Maintain Structural Stability
 (Falsework)
 - Future Replacement Strategies
Service Life Stages

Fig. 2-1: Complete service life from birth to death, adapted from [28]
Sustainability / Future Planning

- **Sustainability 101**
 - Promotes making structure inventory last longer

- **Planning**
 - Knowledge of when structure will be rehabilitated or taken out of service
 - Allows better scheduling of funding needs
What is Needed to Implement a Through-Life Design Process?

- Further Development of
 - Deterioration Models (especially for Propagation phase)
 - Limit States for Acceptable Damage (including critical chloride content)
- Creating Design Examples / Workshops
- Transfer Concrete Service Life Design Process to Steel and Other Materials
- Get the Attention of FHWA & AASHTO State Bridge Engineers
Through-Life References

- Short version published in Structural Concrete, Volume 10, nos. 2-3, (2009)
Through-Life References

- **fib Bulletin 51** – Structural Concrete Textbook on behaviour, design and performance (2010)

- **fib Bulletin xx** – Condition control and assessment of reinforced concrete structures (2010 ?)
Concluding Remarks

- **Service Life Design & Inventory Management**
 - Addresses the whole life of the structure
 - Requires a new proactive mindset for the industry
 - Has huge potential for predicting the future health, safety, and allocation of funding of our infrastructure

- **Process in its Infancy**
 - Better prediction tools need to be developed
 - But, we need to start somewhere
Questions?

Thank you