NCHRP Project 10-70:
Cost-Effective Connection Details for Highway Sign, Luminaire and Traffic Signal Structures
Recommended Specification – Application Examples

Sougata Roy, Richard Sause, John W. Fisher, Yeun Chul Park, Eric J. Kaufmann
Project Summary (2006-11)

- 80 full scale specimens
 - Rational experiment design to establish infinite life
 - Multiple details and geometric combinations
 - 158 tests including re-runs (approx. 2000 million cycles)
 • Approximately 330 details tested (cumulative 5000 million cycles)

- Parametric FEA using 30,000+ models
 - Extended experimental results over a broad range of structure sizes and geometric combinations

- Specification for cost-effective fatigue design

- Final Report (in the process of publication)
NCHRP Project 10-70 @ Lehigh

- Analytical and experimental evaluation
- 80 full size specimens, 158 tests
- Revisions to the AASHTO Specification
- 2006-11
Critical Details

- Tube-to-transverse plate connections
 - Mast arm-to-transverse plate
 - Pole-to-base plate
- Handhole
 - Reinforced
 - Unreinforced
- Mast arm-to-pole connection
 - Gusseted box
 - Ring stiffened
- Mast arm-to-pole pass-through connection
Tube-to-Transverse Plate Connections

Fillet-welded or Socket

Full-penetration Groove-welded

Stiffened Socket
Tube-to-Transverse Plate Connection

- Displacement Induced Fatigue
 - Relative stiffness of components important

- Fatigue resistance of connections depends on
 - Member cross section
 - Round vs. Multisided
 - Connection Geometry
 - Tube diameter and thickness (relative to plate)
 - Plate thickness (*use minimum 2 in*)
 - Number of fasteners and bolt circle ratio
 - Opening in end plate (groove welded connections only)
 - Stiffened vs. Unstiffened
 - Detail Configuration
 - Fillet (socket), Groove welded etc.
 - Weld Geometry
 - Weld shape and size (*Weld termination angle*)
Geometric Parameters

- D_T
- t_T
- t_{TP}
- D_{BC}
- D_{OP}
- N_B
Specification - What’s New

- 2 level specification
 - Nominal stress-based design for most cases
 - Local stress-based and experiment-based design for special cases (Appendix D)

- Proposed for both finite and infinite life
 - Infinite life: new design
 - Finite life: assessment

- Format similar to *AASHTO LRFD Bridge Design Specification* (2009 Interim)

- Fatigue resistance defined as function of geometric parameters
Stress Concentration Factors - K_F, K_I

- Base equations for round section geometries
 - Geometric SCF (finite life - K_F)
 - Socket and groove welded connections have different equations
- Modification multiplier for infinite life (K_I)
- For multisided cross sections modify SCF equations for round section
- For stiffened connections modify SCF equations for unstiffened connections
Nominal Stress Calculation (1)

- Fillet-welded (socket) connection
 - Section at fillet weld toe on tube wall

- Stiffened connections
 - Section at stiffener top weld toe on tube wall
 - Section at fillet weld toe on tube wall
 - Ignore stiffener section (Implicitly considered in SCF equations in Table 11-1 and in Table C11-1)
Nominal Stress Calculation (2)

- Groove-welded connections with backing ring not welded at top
 - Section at groove weld toe on tube wall
 - Ignore backing ring section

- Groove-welded connection with backing ring welded at top
 - Section at groove weld toe on tube wall
 - Section at toe of backing ring top weld on tube wall
Mandatory Requirements

- Thickness of transverse plate \geq 2 in
- Unstiffened tube-to-transverse plate connections
 - Fillet welds and weld reinforcements shall be unequal leg welds (approximately 30° on tube side)
 - Backing ring
 - height \leq 2 in
 - thickness \leq $\frac{1}{4}$ in
 - *Backing ring can be welded to tube only when quality of weld can be ensured (recommended $D_T \leq 16$ in)
Design Example 1: Sign/Signal Structure

- Fatigue critical details
 - Mast-arm-to-transverse plate connection
 - Column-to-transverse plate connection
 - Mast-arm-to-pole connection
 - Handholes
 - Anchor rods
Mast-arm/Pole-to-Transverse Plate Connection

- **Design criteria**
 - \((\Delta f)_n \leq (\Delta F)_n\)

- **Nominal stress range at mast-arm base**
 - \((\Delta f)_n : \text{depends on tube section property } (D_T, t_T)\)

- **Nominal fatigue resistance**
 - \((\Delta F)_n : \text{depends on connection geometry } (D_T, t_T, t_{TP}, D_{OP}, \text{etc...})\)

- **Fatigue design load (due to galloping)**
 - \(P_G = 21 \overline{f}_F\)
Fatigue Resistance in Proposed Spec.

- Three choices
 - Use Table C11-1
 • Tested details in NCHRP 10-70 for infinite life
 - Use Table 11-2 and equations for tubular structures
 - Appendix D
 • Only for *innovative* details
Choice 1: Table C11-1

<table>
<thead>
<tr>
<th>Description</th>
<th>Identification of Parameters</th>
<th>Tube Configuration</th>
<th>Detail Parameters</th>
<th>Finite Life Constant, $A \times 10^8$ (ksi)</th>
<th>Threshold, $A F_{TH}$ (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full penetration groove-welded tubes and reverse plate connections with backing ring attached to the plate with a full penetration groove weld, filling the groove with a continuous fillet-weld around the interior face of the backing ring, and the backing ring not welded to the tube</td>
<td></td>
<td>Round</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_G = 215$ k-in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_T = 0.239$ in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_T = 13$ in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\Delta f)_n = 7.2$ ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option 1
- $t_{TP} = 2.0$ in
- $D_{OP} = 4$ in

Option 2
- $t_{TP} = 2.5$ in
- $D_{OP} = 7$ in

$(\Delta F)_n = (\Delta F)_{TH} = 10.0$ ksi (Category C)

\[(\Delta f)_n < (\Delta F)_n \rightarrow \text{infinite life (OK!)} \]
Choice 2: Table 11-2 / Equations

Round Full-penetration Groove-welded Tube-to-Transverse Plate Connection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Moment</td>
<td>M</td>
<td>215 k-in</td>
</tr>
<tr>
<td>Transverse Plate Thickness</td>
<td>t_{TP}</td>
<td>2.0 in</td>
</tr>
<tr>
<td>Tube Thickness</td>
<td>t_T</td>
<td>0.239 in</td>
</tr>
<tr>
<td>Tube Diameter</td>
<td>D_T</td>
<td>13.0 in</td>
</tr>
<tr>
<td>Number of Fasteners</td>
<td>N_B</td>
<td>4</td>
</tr>
<tr>
<td>Bolt Circle Diameter</td>
<td>D_{BC}</td>
<td>23.3 in</td>
</tr>
<tr>
<td>Transverse Plate Opening</td>
<td>D_{OP}</td>
<td>4 in</td>
</tr>
<tr>
<td>Applied Nominal Stress</td>
<td>$(\Delta f)_n$</td>
<td>7.2 ksi</td>
</tr>
<tr>
<td>Stress Concentration Factor</td>
<td>K_F</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>K_I</td>
<td>2.9</td>
</tr>
<tr>
<td>Constant Amplitude Fatigue Threshold</td>
<td>$(\Delta F)_{TH}$</td>
<td>10 ksi</td>
</tr>
</tbody>
</table>

OK
Note: Groove-welded Connections

- Existing specification: Category E

- Proposed specification:
 - depending on connection geometry (t_T, D_T, t_{TP}, D_{BC}, D_{OP}, and N_B)
 - Category E, D or C
Table 11-2

<table>
<thead>
<tr>
<th>Description</th>
<th>Finite Life Constant, $A \times 10^9$ (MPa3 (ksi3))</th>
<th>Threshold, $(\Delta F)^{th}$ (MPa (ksi))</th>
<th>Potential Crack Location</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 1 — GROOVE-WELDED CONNECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 Full-penetration groove-welded tube-to-transverse plate connections with backing ring attached to the plate with a full penetration weld, or with a continuous fillet-weld around interior face of backing ring, and the backing ring not welded to the tube.</td>
<td>$K_F \leq 1.6 : 3750$ (11.0)</td>
<td>$K_F \leq 3.2 : 69$ (10.0)</td>
<td>In tube wall along groove-weld toe.</td>
<td>Column-to-base-plate connections. Mast-arm-to-flange-plate connections.</td>
</tr>
<tr>
<td></td>
<td>$1.6 < K_F \leq 2.3 : 1330$ (3.9)</td>
<td>$3.2 < K_F \leq 5.1 : 48$ (7.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2.3 < K_F \leq 3.0 : 70$ (4.5)</td>
<td>$5.1 < K_F \leq 7.2 : 31$ (4.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTION 2 — FILLET-WELDED CONNECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4 Fillet-welded tube-to-transverse plate connections</td>
<td>$K_F \leq 3.0 : 1330$ (3.9)</td>
<td>$K_F \leq 3.0 : 48$ (7.0)</td>
<td>In tube wall along fillet-weld toe.</td>
<td>Column-to-base-plate or mast-arm-to-flange-plate socket connections.</td>
</tr>
<tr>
<td></td>
<td>$3.0 < K_F \leq 5.7 : 31$ (4.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5.7 < K_F \leq 7.2 : 18$ (2.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTION 3 — ATTACHMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 Tube-to-transverse plate connections stiffened by longitudinal attachments with partial- or full penetration groove-welds, or fillet-welds in which the tube is subjected to longitudinal loading and the welds are wrapped around the attachment termination.</td>
<td>$K_F \leq 2.5 : 3750$ (11.0)</td>
<td>$K_F \leq 5.5 : 48$ (7.0)</td>
<td>In tube wall at the toe of the attachment to tube weld at the termination of attachment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(See detail 5.4)</td>
<td>(See detail 5.4)</td>
<td>In tube wall at the toe of tube-to-transverse plate weld.</td>
<td></td>
</tr>
</tbody>
</table>
Equation: Groove-weld Connection

\[K_F = 1.35 + \left(0.982 - \frac{C_{BC}}{N_B^{0.0029}} \right) \times (1.0 + 17.3 \times t_T) \times \left(2.60 - \frac{D_T^{1.12}}{2.24} \right) \times \left(\frac{1.0}{C_{OP}^{-0.689} - 0.764} \right) \times t_{TP}^{-1.95} \]

GSCF: Geometric Stress Concentration Factor

2940 Geometric Combinations (FEA Models)
Significance of Geometric Parameters

- N_B neglected
- C_{BC} neglected
- C_{OP} neglected
- t_T neglected
- D_T neglected
Simplified Equations (Unstiffened)...

- **Round Fillet-welded connections**

\[K_F = 2.16 + \left(0.908 - 0.924 \frac{C_{BC}}{N_B^{0.0474}} \right) \times \left(4.54 + 52.1 \times t_T \right) \times (14.6 - 1.17 \times D_T^{1.15}) \times t_{TP}^{-2.36} \]

- **Round Groove-welded connections**

\[K_F = 2.2 + 4.6 \times (1 - C_{BC}^{0.03}) \times (2 + 15 \times t_T) \times \left(10 - D_T^{1.2} \right) \times t_{TP}^{-2.5} \]

\[K_F = 1.35 + \left(0.982 - \frac{C_{BC}^{0.0674}}{N_B^{0.0029}} \right) \times (1.0 + 17.3 \times t_T) \times \frac{2.60 - \frac{D_T^{1.12}}{2.24}}{C_{GP}^{-0.689} - 0.764} \times t_{TP}^{-1.95} \]

\[K_F = 1.35 - 16 \times (1 + 15 \times t_T) \times (5 - D_T) \times \left(\frac{C_{BC}^{0.02} - 1}{4 \times C_{OP}^{-0.7} - 3} \right) \times t_{TP}^{-2} \]
Simplified Equations (Stiffened) ...

- Stiffened connections at stiffener termination

\[
K_F = \left(\frac{4.36}{t_T^{0.334}} \frac{t_ST}{t_T^{0.707}} - 1.0 \right) \times \left(\frac{0.160 + 0.864 \times h_{ST}}{1.0 + 1.12 \times h_{ST}} \right) \times \left(0.519 + 0.257 \frac{D_T}{N_{ST}^{1.42}} \frac{1.60}{t_T^{0.797}} + 0.0293 \frac{0.870}{t_ST^{2.01}} \right)
\]

\[
K_F = \left[0.3 + \frac{t_ST^{0.4}}{t_T^{0.7}} \right] \times \left[0.9 + 0.4 \frac{D_T^{0.8}}{N_{ST}^{1.2}} \right]
\]

- Stiffened connections at fillet-weld toe on tube wall

\[
K_F = \left[9.84 - \frac{D_T}{1.82} + 4.89 \frac{D_T^{1.03}}{N_{ST}^{0.914}} \right] \times \left(\frac{0.129}{h_{ST} + 6.56} \right) \times \left(0.859 + \frac{2.79}{t_ST^{0.631}} \right) \times \left(0.802 + \frac{t_{TP}}{12.9} \right)
\]

\[
K_F = \left[1.0 + 130 \frac{D_T^{0.15}}{N_{ST}^{1.5}} \right] \times \left(\frac{0.13}{h_{ST} + 7} \right) \times \left[-1 + \frac{6.5}{t_{ST}^{0.5}} \right] \times \times K_F \text{ of unstiffened}
\]
…… But Comes with a Cost

Proposed Equation

\[K_F = 1.35 + \left(0.982 - \frac{C_{BC}}{N_B^{0.0029}}\right) \times (1.0 + 17.3 \times t_T) \]

\[\times \left(2.60 - \frac{D_T^{1.12}}{2.24}\right) \times \left(\frac{1.0}{C_{OP}^{-0.689}} - 0.764\right) \times t_{TP}^{-1.95} \]

Simplified Proposed Equation

\[K_F = 1.35 - 16 \times (1 + 15 \times t_T) \times (5 - D_T) \times \left(\frac{C_{BC}^{0.02} - 1}{4 \times C_{OP}^{-0.7} - 3}\right) \times t_{TP}^{-2} \]

groove-welded connections
Infinite Life Stress Concentration Factor

- Includes local notch effect

\[\frac{K_I}{K_F} = (1.76 + 1.83t_T) - 4.76 \times 0.22^K_F \]
Alternative Design Chart (Groove)

<table>
<thead>
<tr>
<th>Category</th>
<th>COP</th>
<th>CBIC</th>
<th>kT</th>
<th>90%</th>
<th>60%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>4</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>t1</td>
<td>0.125</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>0.1875</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>0.3125</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>0.375</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>0.625</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.25</td>
</tr>
</tbody>
</table>

- **COP**: Critical Operating Parameter
- **CBIC**: Critical Bending Moment Index Category
- **kT**: Critical Torque Index
- **90%**, **60%**, **30%**: Design Values

Categories
- **Category C**: Normal
- **Category D**: Reduced
- **Category E**: Extreme
- **Combination cannot be used**: For combinations outside the chart"
Effect of Simplification (Groove)
Solution Using Simplified Design Chart

<table>
<thead>
<tr>
<th>CDT</th>
<th>90%</th>
<th>60%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>tr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125</td>
<td>22.7 ksi</td>
<td>13.3 ksi</td>
<td>C</td>
</tr>
<tr>
<td>0.1875</td>
<td>15.4 ksi</td>
<td>9.0 ksi</td>
<td>C</td>
</tr>
<tr>
<td>0.25</td>
<td>11.8 ksi</td>
<td>6.9 ksi</td>
<td>D</td>
</tr>
<tr>
<td>0.3125</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>0.375</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>0.5</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>0.625</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

\(M_G = 215 \, \text{k-in} \)

\((\Delta f)_n = 9.0 \, \text{ksi} \)

\((\Delta F)_n = (\Delta F)_\text{TH} = 10.0 \, \text{ksi} \) (C)

or

\((\Delta f)_n = 6.9 \, \text{ksi} \)

\((\Delta F)_n = (\Delta F)_\text{TH} = 7.0 \, \text{ksi} \) (D)

\(\therefore (\Delta f)_n < (\Delta F)_n \): Category C

\(\text{or} \)

\(\text{or} \)

\(\therefore (\Delta f)_n < (\Delta F)_n \): Category D

or

\(\therefore (\Delta f)_n < (\Delta F)_n \): Category E

\(\therefore (\Delta f)_n < (\Delta F)_n \): Combination cannot be used
Summary of Design

<table>
<thead>
<tr>
<th></th>
<th>Groove</th>
<th>Fillet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table C11-1</td>
<td>Table 11-2 / Equation</td>
</tr>
<tr>
<td></td>
<td>Option 1</td>
<td>Option 2</td>
</tr>
<tr>
<td>t_{TP} (in)</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>t_T (in)</td>
<td>0.239</td>
<td>0.239</td>
</tr>
<tr>
<td>D_T (in)</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>D_{BC} (in)</td>
<td>23.3</td>
<td>23.3</td>
</tr>
<tr>
<td>D_{OP} (in)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>$(\Delta f)_n$ (ksi)</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>$(\Delta F)_n$ (ksi)</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Mast-arm-to-column Connection
Design Example 2: Highmast Luminaires

- Fatigue critical detail
 - Pole-to-transverse plate connection
Option 1: Stiffened Connection

Stiffened Tube-to-transverse Plate Connection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Moment M</td>
<td>4235 k-in</td>
</tr>
<tr>
<td>Transverse Plate Thickness t_{TP}</td>
<td>2.0 in</td>
</tr>
<tr>
<td>Tube Thickness t_T</td>
<td>0.5 in</td>
</tr>
<tr>
<td>Tube Diameter D_T</td>
<td>42.0 in</td>
</tr>
<tr>
<td>Number of Fasteners N_B</td>
<td>12</td>
</tr>
<tr>
<td>Bolt Circle Diameter D_{BC}</td>
<td>50.0 in</td>
</tr>
<tr>
<td>Number of Stiffeners N_{ST}</td>
<td>12</td>
</tr>
<tr>
<td>Height of Stiffeners h_{ST}</td>
<td>12.0 in</td>
</tr>
<tr>
<td>Thickness of Stiffeners t_{ST}</td>
<td>0.625 in</td>
</tr>
</tbody>
</table>

Applied Nominal Stress $(\Delta f)_n$

- **Value**: 6.3 ksi

Stiffener Termination

- **Factor K_F**: 2.1
- **Factor K_I**: 5.1

Constant Amplitude Fatigue Threshold $(\Delta F)_{TH}$

- **Value**: 7 ksi
- **OK**

Fillet-weld on Tube Wall

- **Factor K_F**: 1.7
- **Factor K_I**: 4.0

Constant Amplitude Fatigue Threshold $(\Delta F)_{TH}$

- **Value**: 4.5 ksi
- **NOT SAFE**
Option 2 : Groove-weld Connection

Round Full-penetration Groove-welded Tube-to-Transverse Plate Connection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Moment</td>
<td>M</td>
</tr>
<tr>
<td>Transverse Plate Thickness, t_{TP}</td>
<td>3.5 in</td>
</tr>
<tr>
<td>Tube Thickness, t_T</td>
<td>0.5 in</td>
</tr>
<tr>
<td>Tube Diameter, D_T</td>
<td>42.0 in</td>
</tr>
<tr>
<td>Number of Fasteners, N_B</td>
<td>12</td>
</tr>
<tr>
<td>Bolt Circle Diameter, D_{BC}</td>
<td>50.0 in</td>
</tr>
<tr>
<td>Transverse Plate Opening, D_{OP}</td>
<td>30 in</td>
</tr>
<tr>
<td>Applied Nominal Stress, $(\Delta f)_n$</td>
<td>6.3 ksi</td>
</tr>
<tr>
<td>Stress Concentration Factor, K_F</td>
<td>2.0</td>
</tr>
<tr>
<td>K_I</td>
<td>5.0</td>
</tr>
<tr>
<td>Constant Amplitude Fatigue Threshold, $(\Delta F)_{TH}$</td>
<td>7 ksi OK</td>
</tr>
</tbody>
</table>
Note: Stiffened Connections

- Existing specification: E'
- Proposed specification:
 - depending on connection geometry \((N_{ST}, h_{ST}, t_{ST}, D_T, t_T)\)
 - Category D
Choice 3 : Appendix D

- Methodology for assessing fatigue performance of innovative connection details
 - Analytical Protocols
 - Experimental Protocols
Acknowledgements

Sponsors
AASHTO / FHWA
TRB - NRC, National Academies
NCHRP Project Panel

Research Support
State Departments of Transportations
Mr. Reilly Thompson, Mr. Nirab Manandhar, Dr. Eric J. Kaufmann, Dr. Ben T. Yen Dr. Karl Frank, Dr. Justin Ocel, Mr. Carl Macchietto
Valmont Inc.; Millerbernd Manufacturing; Union Metal
Research support at Lehigh University

Disclaimer

The opinions and conclusions expressed or implied in the presentation are those of the research agency. They are not necessarily those of the American Association of State Highway and Transportation Officials, or the individual states participating in the National Cooperative Highway Research Program.
Thank You