T-3 Ballot Item

Overview of 2011 Ballot Items

Lee Marsh
BergerABAM
16 May 2011

AASHTO Subcommittee on Bridges and Structures
Technical Committee for Seismic Design T-3
Norfolk, Virginia
Mark Mahan – Team Leader, Caltrans
Elmer Marx – Alaska DOT
Chris Unanwa – Caltrans
Jaro Simek – Caltrans
Dan Tobias – Illinois DOT
Chyuan-Shen Lee – Washington State DOT
Stephanie Brandenberger – Montana DOT
Derrell Manceaux – FHWA
Mehdi Raoof-Malayeri – Missouri DOT
Lee Marsh - BergerABAM
35 Individual Ballot Items (#s 8 to 43 of Agenda)
2 Ballot Items – Affect LRFD Specs
33 Ballot Items – Affect Seismic Guide Specs
Last major revision in 2008 (2009 1st Edition GS)
8. **GS 1.3 – Replacement Flow Charts**
 - Provided charts for General, by SDC, and fdn & detailing
 - Simplified for improved readability and easier use
 - *Fdn & Det (Fig 1.3-5) changed > capacity protection and P-Delta for C&D only*

9. **GS 2.1 and 2.2 – New Definitions**
 - Defines “Oversized pile shaft”
 - Updated notation *(linked to other ballot items)*

10. **GS 3.2 – Liquefaction, Flow or Spread**
 - Re-words permission for inelastic action in piles and shafts with liquefaction, liquefaction-induced lateral flow, or liquefaction-induced lateral spreading

11. **GS C3.3 – Liquefaction, Flow or Spread**
 - Makes commentary consistent with Item 10
12. GS C3.4.1 – Error correction to USGS CD-ROM
 - F_a is used in lieu of $F_{p,g,a}$ on CDROM. Table in GS is correct

13. GS C3.4.1 – Two decimal places for accelerations

14. GS C3.6 – Temporary structure accelerations in CDs
 - At Owner’s discretion contract docs should indicate if bridge was designed as temporary (< 5yrs) using reduced seismic accelerations

15. GS C3.7 – Live load with seismic
 - When LL considered with EQ, recommend γ_{EQ} of 0.5 as in LRFD for typical bridges (better estimate for critical or essential bridges)
 - No need to include LL in seismic mass
 - LL need not be included in pushover analysis
16. **LRFD C3.10.2.1** – Error correction in USGS CD-ROM
 - Same issue as with GS is recognized in LRFD

17. **LRFD 3.10.9.2** – Connection force load path
 - For lower seismic zones prescribed connection force should be followed through the load path to foundation

18. **GS 4.2.1** – Subtended angle limit for analysis as straight, 30 deg
 - The limit of subtended angle for which a bridge can be analyzed as “straight” is recommended to be 30 degrees for the GS. It is 90 deg in the LRFD
Fly-by of Ballot Items

19. GS 4.6 - Connection force load path
 - Same connection force load path requirement as for lower SDC bridges as for LRFD

20. GS C4.9 – Definition of plastic hinging calculations
 - The basic displacement calculations for a plastically deforming cantilever are added to the commentary. This should help clarity and consistency of application. Figures are added also

21. GS C4.11.1 – Use of elastic forces
 - Cases where substructure is so strong as to make capacity protection uneconomical are recognized and elastic design is permitted with Owner’s permission and force-increase factor (1.2 to 2.0) to suppress brittle actions
22. GS 4.11.2 – Plastic hinging figure improvement
 - Existing figures have been added to define overstrength moment conditions in typical bents, longitudinal and transverse
 - Caption to Figure 4.11.2-2 should read “Integral”, not “Nonintegral”

23. GS 4.12.3 – SDC D single-span support length
 - In SDC D a calculated displacement is required for the support length calculation, and this is not available for single-spans. Thus, use 150% of basic support length (consistent with SDC C)

24. GS 4.13.1 – Restrainer design reference
 - For Critical or Essential bridges restrainer or extended support lengths are recommended. Extended support length formula in commentary
 - Reference to Retrofit Manual restrainer calc is provided

25. GS 4.14 – Shear key overstrength too conservative
 - Overstrength for shear keys is reduced from 2*Vn to 1.5*Vn
26. GS 5.6.2 – Improved $E_{I_{\text{eff}}}$ charts
 - New charts clarify horizontal axis variable, $P/(f'\text{ce}^*\text{Ag})$

27. GS 6.4.5 – Footing joint shear reinforcement
 - Joint shear steel is required in cap beams and should be in footings, particularly where column bars turn outward
 - The prescriptive Caltrans method is adopted here for SDC C&D
 - #5 @ 12 EW within D_{ftg} of column + anchorage requirements

28. GS 6.8 – Analysis w/ liquefaction
 - Language regarding analysis of structure in liquefied condition is made mandatory
 - Structure designed for nonliquefied configuration shall be analyzed for liquefied condition with no reduction in spectrum
29. GS 8.4.4 – In-ground hinge limits increased
 – In-ground plastic hinge confined concrete strain limits permitted to go as high as 0.02 vs 0.008 limit currently suggested.

30. GS 8.5 – Essentially Elastic definition improved & cautionary note about member size added
 – M_{ne} set by 0.003 concrete strain or steel reaches table strain limit
 – Suggest minimizing member strength for to limit overstrength forces

31. GS 8.6.1 – Added defn for non-oversized shaft V_u, and V_c outside hinge zone increased
 – SDC B $V_u = \min (\text{elastic or } V_{po} \text{ as determined for SDC C and D})$
 – SDC C & D V_u from p-y type SSI or based on IP to 2D within shaft
 – V_c outside hinge zone consistent with hinge zone ($3 \text{ vs } 2\sqrt{f'c}$)
32. GS 8.6.2 – Improved readability of shear equations
 – Equations reformatted using shear adjustment factor to read better
 – Diameter of column core defined to center of spiral or hoop

33. GS C8.6.3 – Interlocking spiral side steel
 – Side steel required between spirals along long side
 – Spaced every other spiral turn or hoop and anchored into core

34. GS C8.8.4 – Column longitudinal steel cutoffs
 – Commentary recommending extension of column steel as far as possible
 into joint region, near opposite face
 – With two-stage drop caps, extend column bars to top of lower stage

35. GS 8.8.9 – Location of hoop weld details
 – With welded hoops, stagger weld splices at circumference 1/3 points
 – With interlocking spirals, welds should be inside interlock region
36. GS 8.8.10 – Col. long. steel cutoffs in shafts
 - Minimum column bar embeds into oversized shafts, $l_d + D_c$ alternate with $l_d + 2D_c$

37. GS C8.8.11 – Transverse steel spacing col-to-shaft
 - The transverse steel spacing is opened up to twice that of the column in the shaft transition (column splice) zone

38. GS 8.9 – Flexural overstrength for shafts
 - Shaft M_{ne} strength ≥ 1.25 Moment from M_{po} of column, under liquefied conditions this may be scaled back to 1.0 w/ Owner’s permission

39. GS 8.10 – Girder-to-column moment distribution for precast bridges
 - 2/3rds of the longitudinal seismic moment may be resisted within effective width, $Beff$
 - The other 1/3 is resisted outside, if tributary width permits
Fly-by of Ballot Items

40. GS 8.13 – Improved joint shear definitions
 – The joint shear equation variables have been more clearly defined
 – Provisions require joints that do not fit geometry of T and Knee joints to be designed using strut-and-tie models

41. GS 8.13.4 – Revised T & Knee-joint shear requirements
 – Expands article to cover both T and Knee configurations
 – Provides new requirements of knee joints and improved figures

42. GS 8.14.1 – Improved isolation gap requirements
 – Requires full gap across flares, if flares are to be isolated
 – Provides method for calculating rotation demand to prevent gap closure

43. GS 8.15 – Moment-reducing hinge details
 – Design requirements for column shear keys for moment-reducing hinge details provided, including gap requirements to prevent closure
Thank you!