Comparative Analysis Reports on Tunnel Security

Ray Cotton
Transportation Security Administration
Highway Motor Carrier Branch

Gregory M. Jizba
U.S. Army Corps of Engineers, Omaha District
Protective Design Center
9/11 Act Recommendations

- The *Implementing Recommendations of the 9/11 Commission Act of 2007*:
 - Risk Assessments on critical infrastructure and key resources of the United States must be conducted.
 - In addition, a report shall also be prepared on the comprehensive assessments evaluating threat, vulnerability, and consequence.
“Significant” Infrastructures

More than 590,000 Bridges with a 20 Meter Span or More

52 Bridges Originally Identified by TSA

350 Tunnels with greater than 100 Meter Length

20 Tunnels Originally Identified by TSA
Protective Design Center

- What is the Protective Design Center (PDC)?
 - Army's center of expertise for engineering services related to force protection and protective design
 - Located in Omaha Nebraska, Omaha District, Northwestern Division
- Services: wartime threats, secure storage, accidental explosions, classified programs
- Security engineering and protective design
- Perform vulnerability analyses and risk assessments to determine recommended protection, and design of protective structures/systems,
- Write criteria for DoD

Web Page: https://pdc.usace.army.mil
Project Delivery Team

- Department of Homeland Security (DHS) Transportation Security Administration (TSA) Highway and Motor Carrier Branch (HMC)
- USACE Omaha District Protective Design Center
- Black & Veatch Federal Services Division
Bridge and Tunnel Assessment Program for TSA

- **Inter Agency Agreement Signed 24 Jan 2010**
 - 1st Bridge Site Visit conducted: 8 Feb 2010
 - 34 Assessment Reports Completed
 - 5 Assessment Reports in Process
 - 1st Tunnel Site Visit conducted: 15 Nov 2011
 - 9 Assessment Reports Completed
 - 5 Assessment Reports in Process
Bridge and Tunnel Assessment Program for TSA

- **Focus on Antiterrorism**
 - Vulnerability Assessment
 - Risk Analysis
 - Feasible Mitigation Measures (with cost)

- TSA provides interface with bridge owner, schedule, and coordination

- Three steps in process:
 - 1 - Site survey
 - 2 – Risk Assessment
 - 3 – Report to TSA
Step One: Site Survey Assessment

- **Data Collection**
 - Review of available drawings and information
 - Completion of questionnaires
 - Conduct information gathering discussions
 - On-site survey
Step Two: Risk Assessment

- Vulnerability Analysis
 - Identify Threats
 - Identify Vulnerable Components
 - Prioritize using Component Risk Analysis
 - Develop Threat Scenarios

- Risk Reduction
 - Develop Protective Measures
 - Develop Mitigation Measures
 - Mitigated Component Risk Analysis
 - Mitigation Measures Cost Estimates
Risk Analysis Method

\[R_{ij} = O_{ij} \times V_{ij} \times I_j \]

- \(R \) = Risk for component \(j \) subject to threat \(i \)
- \(O_j \) = (Occurrence) Measure of the relative likelihood of threat \(i \) occurring against component \(j \)
- \(V_{ij} \) = Measure of the relative vulnerability of component \(j \) to threat \(i \)
- \(I_j \) = Importance of an individual component \(j \)

Tunnel Assessment

• Leveraged Best Practices and recommendations from past work. Key studies include:
 • Risk-Based Prioritization of Terrorist Threat Mitigation Measures on Bridges, ASCE
 • TRANSPORTATION SECURITY, Volume 12: Making Transportation Tunnels Safe and Secure, National Cooperative Highway Research Program (NCHRP) REPORT 525, 2006.
 • The “Tunnel vulnerability Assessment Best Practices Guide” by TSWG
 • AASHTO Bridge and Tunnel Blue Ribbon Panel Report
• Developed risk assessment method similar to bridge risk process (look and feel like)
Bridge versus Tunnel Risk Assessment

- **Bridge**: One Risk Assessment
 - **Structure Risk Analysis** Evaluate individual bridge components since loss of life is prevented by protecting the structure (stability)
 - Threats are VBIED, HEIED, NECD, VI, Fire

- **Tunnel**: Two Risk Assessments
 - **Operation Risk Analysis (Closure)** Evaluate tunnel components and systems for “catastrophic damage” (Shut-Down of Operations)
 - Threats are VBIED, HEIED, NECD, VI, Fire
 - **Casualty Risk Analysis (Injury)** Evaluate magnitude of casualties caused by attack (Policy Decision to Shut-Down of Operations)
 - Threats are VBIED, Fire, Chemical
Identify Vulnerable Components

- As recognized during the data collection process

<table>
<thead>
<tr>
<th>Tunnel Structure</th>
<th>Tunnel Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal</td>
<td>Ventilation Systems</td>
</tr>
<tr>
<td>Tunnel Shell</td>
<td>Ventilation Building</td>
</tr>
<tr>
<td>Liner</td>
<td>Ventilation Structure</td>
</tr>
<tr>
<td>Immersed Tube</td>
<td>Ventilation Shaft or plenums</td>
</tr>
<tr>
<td>Cut-and-Cover</td>
<td>Life Safety</td>
</tr>
<tr>
<td>Bored or Mined</td>
<td>Drainage</td>
</tr>
<tr>
<td>Column or Wall</td>
<td>Fire Protection</td>
</tr>
<tr>
<td>Roof Slab</td>
<td>Electrical Systems</td>
</tr>
<tr>
<td></td>
<td>Stand-Alone Substation</td>
</tr>
<tr>
<td></td>
<td>Exposed Duct bank</td>
</tr>
<tr>
<td></td>
<td>Utility Building</td>
</tr>
<tr>
<td>Tunnel Communications, Command and Control Systems</td>
<td></td>
</tr>
<tr>
<td>C&C Center Above Tunnel</td>
<td></td>
</tr>
<tr>
<td>Stand-Alone C&C Center</td>
<td></td>
</tr>
<tr>
<td>Components: CCTV, SCADA, phones, signals, system control, traffic control</td>
<td></td>
</tr>
</tbody>
</table>

- Consider key components listed in various industry reports.
 - The “Tunnel vulnerability Assessment Best Practices Guide” by TSWG
 - AASHTO Bridge and Tunnel Blue Rib Panel Rpt
 - Making Transportation Tunnels Safe and Secure, NCHRP REPORT 525, 2006
Step Three: Report to TSA - Highway Motor Carrier Branch

- Individual Site Report
 - Phase Ia: Risk Assessment Tables
 - Phase Ib: Draft Report, USACE Internal Review
 - Phase II: Draft Final Report, TSA / FHWA / Stakeholder Review
 - Final Report shared with Cleared Owner Personnel

- Aggregate Vulnerability Report
 - Two Separate Reports:
 - Bridge
 - Tunnel
 - Trend and Summary Information
 - Developed at completion of individual site reports
 - Classification TBD
Individual Structure Report

- Report Classification is “Secret”
- Executive Summary is “Sensitive Security Information”
- Report Chapters
 - Introduction
 - Methodology & Observations
 - Conclusions & Recommendations
 - Summary
- Appendices
Individual Structure Report (continue)

- Appendices Include:
 - Assessment Information
 - TSA Checklist
 - Risk Analysis and Calculation Details
 - Scenarios / Mitigation Strategies
 - Cost Estimates
 - Report Quality Control Measures
 - Risk Assessment Methodology
Comparative Analysis Report for Tunnels

• Following individual tunnel reports:
 • Identify Highest Risk Components/Threat Combinations
 • Look at:
 • Vulnerabilities by type of structure
 • Existing Security Measures
 • Operational Procedures
 • Mitigation strategies by structure type
 • Effectiveness of proposed mitigation
 • Compare cost of mitigation
Recommendations for Research - Tunnels

• **Vulnerability:**
 - Tunnel structure breech / liner vulnerability
 - Blast damage to ventilation systems
 - Blast propagation

• **Mitigation Materials:**
 - Tunnel hardening – VBIED/HEIED
 - Rapid recovery and repair
 - Flexible ventilation control with damage?
 - Ventilation system design
 - Traffic control and risk management procedures
TSA Program Status

- 9 Reports Complete
- 5 Reports in Process
- 5 States
- Rock, Soft Earth, Cut & Cover, Immersed Tube, Shield Driven, Air Rights Structure
- Length from 825’ to more than 2 miles
- 2 lanes to 9 lances (total in all bores)
- All site visits complete
- All Individual Reports and Comparative Report Complete by early 2016
TSA and USACE Evaluate Attack Scenarios for Highway Tunnels and Bridges

Questions??

Gregory M. Jizba
U.S. Army Corps of Engineers
Protective Design Center

January 2013