Bascule Bridge Lightweight Solid Deck Research Project - UPDATE
Florida Department of Transportation

AASHTO Technical Committee Presentations
T-8 Movable Bridges
April 20, 2015

Presented by: George Patton, PE
Introduction

Purpose: Identify/Develop Viable Lightweight Deck System with Solid Surface to Replace Steel Open Grid Deck on Typical Florida Bascule Bridges

- Weight Limitations on Existing Bridges
 - Trunnions, Main Girders

- 5-inch Aluminum Orthotropic Deck with FSW Joints Scored Highest during Alternatives Screening Phase
 - FRP, SPS, UHPC Waffle Slab also Considered
 - 5-inch Depth not Originally Available
 - Working with SAPA/AlumaBridge to Develop
 - Derivative of Reynolds Alumadeck

- Project advanced to Deck System Development and Laboratory Testing Phase
Aluminum Orthotropic Deck

Advantages:

- Solid Surface (Functionality and Safety)
- Weight Neutral Solution (21 psf)
- Durability and Service Life
 - Robust Design
 - Meets all AASHTO Limit States
 - High Stiffness
 - Corrosion Resistant
 - Fatigue Resistant (FSW Yields Improvements)
- Configuration
 - Adaptable to Different Bascule Configurations
 - Minimal Bridge Modifications
 - Accelerated Bridge Construction (ABC)
Aluminum Orthotropic Deck

Advantages:

- Available AASHTO LRFD Design Specifications
- Material Familiarity and Predictability
- Previous Testing and Research
 - Technology since 1936 (Smithfield Bridge)
 - Derivative of Reynolds Alumadeck
 - FHWA/VDOT/Virginia Tech Testing Program: ‘95-’98
- Previous Installations
 - Rte. 58 over Little Buffalo Creek Bridge, VA
 - Sandisfield Bridge, MA
 - 70+ Bridges in Europe
Aluminum Orthotropic Deck

Disadvantages:

- Relatively High Initial Cost
 - $100-$120/sf after Recent Enhancements
- New Product (Derivative)
- Coefficient of Thermal Expansion
 - $12.8 \times 10^{-6}/F$ (Alum.) vs. $6.5 \times 10^{-6}/F$ (Steel)
 - Panel Joints Recommended
- Wearing Surface (Periodic Replacement)
- Galvanic Corrosion (Mitigation)
- Fasteners (Hollow Profile)
- Proprietary Product
- Misconceptions
Aluminum Orthotropic Deck

- 6063-T6 Aluminum Alloy
- 32-foot Max. Extrusion Lengths
- 5-inch Deep x 13½-inch Wide Main Extrusions
- 5-inch Deep x 5¼-inch Wide End Extrusions
Aluminum Orthotropic Deck

- Extrusions Friction Stir Welded (FSW) to Create Panels
- Infinite Range of Panel Widths
 - Extrusions in Multiples of 4½” (9”, 13½”)
 - End Extrusion Flanges Trimmed from 3” to 5¼”
Aluminum Orthotropic Deck

- 5-inch Deck Spans Transversely across Stringers
 - Typical Existing Bascule Spacing 4.0 to 4.5 feet
 - Increased Strength/Stiffness Provides Opportunity to Respace Stringers
 - 6.0 feet Span (Optimal Spacing for Most Bascules)
 - 2.0 feet Cantilever (Avoid Support on Main Girders and Floorbeams)
Aluminum Orthotropic Deck

- **Accelerated Bridge Construction (ABC)**
 - Shop Bolt New Stringers to Deck Panels
 - Facilitate Alignment, Minimize Field Work
 - Stringers Clear Floorbeam Flange
 - WT Connection Stiffeners/Splice Type Connections
Aluminum Orthotropic Deck

- Accelerated Bridge Construction (ABC)
 - Shop Bolt New Stringers to Deck Panels
 - Facilitate Alignment, Minimize Field Work
 - Stringers Clear Floorbeam Flange
 - WT Connection Stiffeners/Splice Type Connections
Friction Stir Welding (FSW)

- Renewed Interest in Aluminum Deck
- The Welding Institute, UK – 1991
- Solid-State, Hot Shear Joining Process
 - Rigidly clamped plates
 - Profiled pin plunges into material
 - Shoulder in firm contact with surface
 - Tool rotates rapidly and advances along joint
 - Friction generates heat, softens material
 - Produces plastic deformation and flow
 - Material re-deposited from front to trailing edge
 - Material forges into solid-state as it cools

- Complex Thermo-Mechanical Process
 - Varying temperature (0.7 to 0.9 melting point)
 - Varying deformation
 - Yields varying recrystallization
 - Different zones and microstructures
 - Translation and rotation yields asymmetric profile
Friction Stir Welding (FSW)

- Higher Quality Joint than previous Metal Inert Gas (MIG) Welding
 - Significantly Less Heat Input with Lower Distortion and Residual Stress
- Flaws still Possible:
 - Voids, Lack of Fusion, Lack of Penetration, Faying Surface Defects, Presence of Entrapped Oxides
- Quality Influenced by
 - Tooling (Shoulder Size, Probe Size, Depth and Thread Details)
 - Support (Alignment, Clamping Force)
 - FSW Process (Rotation/Advancement Speed, Force, Inclination Angle)
- Quality Control/Weld Inspection
 - AWS D1.2 Structural Welding Code – Aluminum (2014)
 - WPS, PQR, WPQR
 - Bend and Macroetch Tests (Weld Tabs), Visual, RT/UT
Wearing Surface

- Euclid Flexolith (Low Modulus Epoxy Coating w/ Broadcast Overlay) - Recommended
- Skid/Wear Resistance (Basalt/Alum. Oxide Aggregate Blend)
- Two Layers (¼” Thickness, 3 to 4 psf Unit Weight)
- Adhesion/Cohesion Bond Strength
 - Environmental Factors (Temperature, Humidity)
 - Surface Preparation (Anchor Profile, Chemical Treatment, Cleaning)
 - Bond Strength Tests
- Stiff Substrate permits Epoxy Polymer Binder
- Resurfacing
 - 10 to 15 Year Service Life Anticipated
 - 17+ Year Service Life (Rte. 58 over Little Buffalo Creek, VA)
 - Resurface before Aluminum Substrate Exposed
 - Simplify Prep
 - Avoid Field Applied Chemical Treatment
Panel Joints

- Locate over Floorbeams and at Stringer Mid-Span
- Reduce Thermal Forces (End Connection Moments)
- Accommodate Panel Tolerances
- WABO Evazote UV Seal (1” Joint) – FDOT Preference
- Ultra Low Modulus Silicone Sealant (1/2” Joint)
Deck to Stringer Fasteners

- Treat Deck as Non-Composite for Stringer Design
- Anticipate Composite Behavior for Connections (Slip Critical)
- Class ‘B’ Surface Condition (Certified by RCSC)
 - Abrasion Blast Aluminum Surface
 - Steel with Hot Dip Galvanized or Inorganic Zinc Primer Coatings
- Proof Load (28 kips – ¾” Dia. ASTM A325 Bolt)
- Design for No Slip from Live Load
 - High Number of Cycles
 - Prevent Fretting (Premature Wear of Protective Coatings)
 - Prevent Bolt Fatigue (Reverse Bending)
 - Prevent Loosening from Vibration
- Allow Slip from Thermal Load
 - Low Number of Cycles
 - Forces Relieved after Slip Occurs
Conventional Fasteners - Recommended

- ASTM A325 Bolts (¾” Dia.)
 - Heavy Hex
 - Tension Control Bolts
- Hollow Profile Installation Challenges
 - Requires Special Installation/Tightening Tools
Blind Type Fasteners – Not Recommended

- Böllhoff Rivnuts
- Lindapter Hollo-Bolts
- Not Recommended as Primary Fastener
 - Limited Bridge Applications (Used for Appurtenances)
 - Limited Pre-load Capability (Not used for Slip-critical)
- Possible Use for Maintenance Purposes
Fastener Design

- Compute Fastener Pitch for Partial Composite Behavior (Live Load Shear Flow)
 - Discontinuity in Deck at Mid-Span Joint Yields “Spike” in Horizontal Shear Flow
- Bottom Plate Fully Effective (Slip Critical Connection)
- Top Plate Partially Effective (Attached to Bottom Plate through Inclined Webs)
General Corrosion

- 6063-T6 Alloy – Excellent Corrosion Resistance
 - Tightly Bonded Aluminum Oxide Film
- Experiences Superficial Pitting
 - Maximum Pit Depth is Fraction of Material Thickness
- Limit Standing Water
- Wetness from Condensation (Limited Duration)
- Rainwater Runoff through Joints/Edges
 - Seal Joints and Openings in Hollow Extrusions
- Experience
 - FDOT, et al have Significant Experience with Galvanized Fasteners in Marine Environments with No Significant Issues
 - Railings, Sidewalk Planking, Light Poles
Galvanic Corrosion

- Dissimilar Metals (Galvanic Series)
- Less Noble (Anodic) Material Sacrifices to Protect More Noble (Cathodic) Material
- Galvanized Steel Bolts/Stringers
 - Zinc Less Noble than Aluminum
 - Zinc Sacrifices to Protect Aluminum
 - Maximize Zinc with Hot Dip or Mechanically Galvanized Coatings
- After Zinc Material Spent
 - Uncoated Steel is More Noble
 - Aluminum Deck Corrodes but is Negligible
 - Surface Area of Cathodic Material (Bolts/Stringers) Significantly Less than Surface Area of Anodic Material (Aluminum Deck)
AASHTO LRFD Bridge Design Specifications

- Section 7 (Aluminum Structures) and Article 9.8.4 (Orthotropic Aluminum Decks)
 - Analysis Similar to Orthotropic Steel Decks
 - Load Distribution Similar to Concrete Decks
 - Current Design Specifications Developed with Stiffening Ribs Parallel to Traffic
 - Additional Investigation Recommended for Stiffening Ribs Perpendicular to Traffic
 - Extensive FEA Program followed by Testing Program

- HL-93 Design Truck and Tandem (Placement for Max. Effect)
 - Maximum Positive, Negative, and Cantilever Negative Bending

- Limit States
 - Service I (Deflections)
 - Strength I
 - Strength II (Overload Permitting)
 - Fatigue I (Infinite Life)
Aluminum Orthotropic Deck Analysis

- **System 1**
 - Deck Longitudinal Forces (Axial and Flexure) from Stringer Flexure with Composite Deck

- **System 2**
 - Deck Transverse Forces (Flexure) from Loading between Stringers
 - Positive, Negative and Cantilever Flexure

- **System 3**
 - Localized Flexure of Deck from Wheel Patch Loading
 - Hollow Profiles behave as Rigid Frames
Aluminum Orthotropic Deck Analysis

- Load Distribution
 - Similar to Concrete Decks
 - Equivalent Strip Width Equations (Simplified Analysis)
 - Combined Effects – System 3 (Local) with Systems 1 and 2 (Global)
- Shear Lag Effects
 - Effective Flange Width Concept (Similar to Segmental Box Girder Provisions)
 - Multiplication Factor
Aluminum Orthotropic Deck Analysis

- System 2 – Load Distribution – 3D Plate and Shell FEA

Deck Top Stress (Positive Moment – Tandem Loading) Section thru between Stringers
Aluminum Orthotropic Deck Analysis

- System 2 – Load Distribution – 3D Plate and Shell FEA

Deck Top Stress (Positive Moment – Truck Loading) Section thru Deck between Stringers

Shear Lag

Direction of Traffic

Local Effect
Aluminum Orthotropic Deck Analysis

SYSTEM 2 POSITIVE FLEXURE MAXIMUM STRESSES AND DEFLECTIONS

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Loading</th>
<th>Max. Stress (ksi)</th>
<th>Max. Deflection (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tension (Bottom)</td>
<td>Compression (Top)</td>
</tr>
<tr>
<td>Service I</td>
<td>HL-93 Design Truck</td>
<td>6.3</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>HL-93 Design Tandem</td>
<td>5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Strength I</td>
<td>HL-93 Design Truck</td>
<td>11.1</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>HL-93 Design Tandem</td>
<td>9.7</td>
<td>10.0</td>
</tr>
<tr>
<td>Strength II</td>
<td>FL-120 Permit Truck</td>
<td>14.3</td>
<td>15.0</td>
</tr>
<tr>
<td>Limits</td>
<td>Φ_F_{nb} =</td>
<td>27.5</td>
<td>25.2</td>
</tr>
</tbody>
</table>

SYSTEM 2 NEGATIVE FLEXURE MAXIMUM STRESSES AND DEFLECTIONS

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Loading</th>
<th>Max. Stress (ksi)</th>
<th>Max. Deflection (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tension (Top)</td>
<td>Compression (Bottom)</td>
</tr>
<tr>
<td>Service I</td>
<td>HL-93 Design Truck</td>
<td>6.3</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>HL-93 Design Tandem</td>
<td>5.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Strength I</td>
<td>HL-93 Design Truck</td>
<td>11.0</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>HL-93 Design Tandem</td>
<td>8.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Strength II</td>
<td>FL-120 Permit Truck</td>
<td>14.2</td>
<td>19.5</td>
</tr>
<tr>
<td>Limits</td>
<td>Φ_F_{nb} =</td>
<td>25.2</td>
<td>27.5</td>
</tr>
</tbody>
</table>

SYSTEM 2 CANTILEVER NEGATIVE FLEXURE MAXIMUM STRESSES AND DEFLECTIONS

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Loading</th>
<th>Max. Stress (ksi)</th>
<th>Max. Deflection (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tension (Top)</td>
<td>Compression (Bottom)</td>
</tr>
<tr>
<td>Service I</td>
<td>HL-93 Design Truck</td>
<td>5.7</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>HL-93 Design Tandem</td>
<td>4.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Strength I</td>
<td>HL-93 Design Truck</td>
<td>10.0</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>HL-93 Design Tandem</td>
<td>8.1</td>
<td>11.9</td>
</tr>
<tr>
<td>Strength II</td>
<td>FL-120 Permit Truck</td>
<td>12.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Limits</td>
<td>Φ_F_{nb} =</td>
<td>25.2</td>
<td>27.5</td>
</tr>
</tbody>
</table>
Aluminum Orthotropic Deck Analysis

- **Design for Infinite Fatigue Life**
- **Fatigue Sensitive Details**
 - Base Metal: Cat. ‘A’
 - FSW Joint (Stress Normal to Weld Axis): Cat. ‘C’
 - Consistent with CJP Welds Ground Smooth
 - Conservative Based on MIG Welding
 - Testing demonstrates FSW Joints yield Greater Fatigue Resistance than Base Metal
- **Conservative Design**
 - Design Nominal Fatigue Resistance = \(\frac{1}{2} \times \text{Constant Amplitude Fatigue Threshold} \)
 - \((\Delta F)_N^{\frac{1}{2}} = \frac{1}{2} (\Delta F)_T^{\text{TH}} \)

System 3 - Fatigue Life Values

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category ‘A’</th>
<th>Category ‘C’</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Delta F)_T^{\text{TH}})</td>
<td>9.5 ksi</td>
<td>4.0 ksi</td>
</tr>
<tr>
<td>Design ((\Delta F)_N^{\frac{1}{2}})</td>
<td>4.75 ksi</td>
<td>2.0 ksi</td>
</tr>
<tr>
<td>(Y (\Delta f) \leq (\Delta F)_N)</td>
<td>4.35 ksi</td>
<td>1.95 ksi</td>
</tr>
</tbody>
</table>
Aluminum Orthotropic Deck Analysis

- System 3 – Fatigue
- 3D Solid Element FEA
Test Program - Goals

- Deck System Performance per AASHTO LRFD Design Provisions
- Compare Measured Stresses and Deflections to FEA
- Applicability of AASHTO LRFD Equivalent Strip Width Equations
 - Load Distribution
 - Required Adjustments for Shear Lag Effects
 - Combined System 2 and System 3 Effects
- Fastener Performance/Design Parameters
- Performance of Wearing Surface
Test Program – Phase 1 (Component Testing)

- Verify FEA Results
- Deck Panel Performance (Static)
- Connection Testing
- Constructability
Test Program – Future Phases

- Phase 2 (Full System Testing)
 - Two Floorbeam Bays w/ Deck Panels, Stringers and Floorbeams
 - Reuse Panels from Phase 1 Testing
 - Heavy Vehicle Simulator (Moving Wheel Load)
 - Evaluate System Response
 - Fatigue Investigation

- Phase 3 (Field Testing)
 - Install Test Panels on Existing Bascule Bridge
 - Reuse Panels from Laboratory Testing
 - Two Floorbeam Bays, Half Roadway Width

Dynatest Mk IV Heavy Vehicle Simulator
Latest Developments/Other Projects

- AlumaBridge/LB Foster Collaboration
- Projects in Canada
 - St. Ambroise Bridge, Ontario, Canada - Under Construction
 - Other Projects - Under Consideration
 - Seeking Opportunities for 5-inch Deck
- Extrusion/FSW Refinements
 - Wider Extrusions (Reduced Number of Welded Joints)
 - Single Sided FSW Joints
 - Matched Top and Bottom Flange Thickness
 - Deck Unit Price Reduction: From $150/sf to $120/sf
Questions/Discussion?