Introduction to AASHTO
Load and Resistance Factor Design
Structural Supports for Signs, Luminaires Traffic Signals

Overview
Loads
Calibration

Dr. Jay A. Puckett, PE, F.ASCE
Director of the Durham School University of Nebraska
Emeritus Professor at University of Wyoming
President BridgeTech, Inc.

Dr. Michael G. Barker, PE
Professor
University of Wyoming
Calibration of Design Equations

\[\sum \gamma_i Q_i \leq \varphi R_n = R_r \]

- Given the characteristics of the loads and structural materials

What load factors and resistance factors lead to an acceptably safe and consistent design?

- Given the characteristics of the loads and structural materials

\(\gamma_i \) = load factors

\(Q_i \) = load effects

\(\varphi \) = resistance factors

\(R_n \) = resistance

\(R_r \) = factored resistance
Safety or Reliability Index β

- Failure is defined as the Strength $<$ Load ($S < L$)
- Probability of failure is the Probability ($S < L$)
- Reliability (Safety) Index β is a measure of the Probability (Strength $<$ Load)

- Intent of LRFD - β high enough for adequate safety and consistent over a range of design scenarios.

$\beta = \text{the number of standard deviations that the mean value of the limit state failure function is on the safe side of failure}$
Statistical Properties

Load & Strength Probability Functions

Central Safety Margin

\[\mu_{\text{Strength}} - \mu_{\text{Load}} \]

Load

\[\mu_{\text{Load}} \]

\[\sigma_{\text{Load}} \]

Strength

\[\mu_{\text{Strength}} \]

\[\sigma_{\text{Strength}} \]

Load and Resistance Quantity

(showing normally distributed variables)
Reliability Index

\[\sigma_{\text{Limit State}} = \sigma_{\text{Strength}} + \sigma_{\text{Load}} \]

\[\mu_{\text{Limit State}} = \mu_{\text{Strength}} - \mu_{\text{Load}} \]

Limit State Eqn = Strength - Load

Limit State Probability Functions

Probability Density

Limit State Quantity

(showing normally distributed variables)
Reliability Index

Limit State Equations:

\[\beta = \frac{\mu_{\text{Limit State}}}{\sigma_{\text{Limit State}}} \]

Probability of Failure:

\[P(\text{Failure}) = \Pr(\text{Strength < Load}) = \Pr(\text{Strength - Load < 0}) \]

Limit State Quantity (showing normally distributed variables)
Calibration

• Determine the statistical properties of loads
• Determine the statistical properties of strength (for optimal design using assumed ϕ and γ_i)
• Determine β
• Vary ϕ and γ_i until acceptable safety and consistency achieved (“calibrate” to current accepted practice – current ASD procedures)
Loads Considered

• Dead & Wind
• Ratio of Dead to Wind
• Importance (300/700/1700 year wind)
• Combined Moment & Torsion

Significant Dead Load Effect

Mostly Wind Load
Wind Regions Considered

- Coastal regions
- Central US and Western US
- Southern Alaska
- West Coast

700 Year Basic Wind Speed mph (m/s)
LRFD Reliability Index β

Assume ϕ, γ_{D1}, and γ_W

Optimized Design $\phi R_n = \gamma_{D1} M_D + \gamma_W M_{MRI}$ Year Wind

Probability Properties

- Strength R
 - $\mu_{\ln R}$
 - $\sigma_{\ln R}$
- Load Q
 - $\mu_{\ln Q}$
 - $\sigma_{\ln Q}$

Reliability Index (Lognormal Distributions)

$$\beta = \frac{\mu_{\ln R} - \mu_{\ln Q}}{\sqrt{\sigma^2_{\ln R} + \sigma^2_{\ln Q}}}$$

All Reliability Analyses Based On: $M_D + M_{700} = 1.0$

For Equivalent Comparisons
ASD Reliability Index β

Use LTS – 6 Allowable Stress Design

Optimized Design

$$M_{\text{allowed}} = \left(\frac{4}{3}\right)0.66F_yS_x = M_D + I M_{50}$$

Probability Properties

Strength R

- $\mu_{\ln R}$
- $\sigma_{\ln R}$

Load Q

- $\mu_{\ln Q}$
- $\sigma_{\ln Q}$

All Reliability Analyses Based On:

$$M_D + M_{700} = 1.0$$

For Equivalent Comparisons

Reliability Index (Lognormal Distributions)

$$\beta = \frac{\mu_{\ln R} - \mu_{\ln Q}}{\sqrt{\sigma_{\ln R}^2 + \sigma_{\ln Q}^2}}$$
700-Year MRI

Minimum of the 4 regions

Average over the 4 regions

<table>
<thead>
<tr>
<th>ϕ</th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_D</td>
<td>1.10 1.25</td>
</tr>
<tr>
<td>γ_W</td>
<td>1.00 0.00</td>
</tr>
</tbody>
</table>
700-Year MRI

<table>
<thead>
<tr>
<th></th>
<th>ASD</th>
<th>LRFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>γ_D</td>
<td>1.10</td>
<td>1.25</td>
</tr>
<tr>
<td>γ_W</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Minimum Beta - 700 Year

- ASD Range of β
- LRFD Range of β

Minimum of the 4 regions

- 700 Year MRI
 - Corresponds to
 - ASD I = 1.00

Average Beta - 700 Year

- Average over the 4 regions
1700-Year MRI

Minimum Beta - 1700 Year

<table>
<thead>
<tr>
<th></th>
<th>LRFD</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>3.50</td>
<td>3.00</td>
</tr>
<tr>
<td>0.40</td>
<td>3.00</td>
<td>2.50</td>
</tr>
<tr>
<td>0.60</td>
<td>2.50</td>
<td>2.00</td>
</tr>
<tr>
<td>0.80</td>
<td>2.00</td>
<td>1.50</td>
</tr>
<tr>
<td>1.00</td>
<td>1.50</td>
<td>1.00</td>
</tr>
<tr>
<td>1.20</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>1.40</td>
<td>0.50</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Average Beta - 1700 Year

<table>
<thead>
<tr>
<th></th>
<th>LRFD</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>3.50</td>
<td>3.00</td>
</tr>
<tr>
<td>0.40</td>
<td>3.00</td>
<td>2.50</td>
</tr>
<tr>
<td>0.60</td>
<td>2.50</td>
<td>2.00</td>
</tr>
<tr>
<td>0.80</td>
<td>2.00</td>
<td>1.50</td>
</tr>
<tr>
<td>1.00</td>
<td>1.50</td>
<td>1.00</td>
</tr>
<tr>
<td>1.20</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>1.40</td>
<td>0.50</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1700 Year MRI Corresponds to ASD I = 1.15
300-Year MRI

Minimum Beta - 300 Year

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Wind/M Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
</tr>
<tr>
<td>4.00</td>
<td>3.50</td>
<td>3.00</td>
<td>2.50</td>
<td>2.00</td>
<td>1.50</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
</tr>
</tbody>
</table>

300 Year MRI
Corresponds to
ASD I = 0.87

Average Beta - 300 Year

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M Wind/M Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
<td>Beta</td>
</tr>
<tr>
<td>4.00</td>
<td>3.50</td>
<td>3.00</td>
<td>2.50</td>
<td>2.00</td>
<td>1.50</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
</tr>
</tbody>
</table>

φ	0.90	
γ_D	1.10	1.25
γ_W	1.00	0.00
Reliability Index with MRI

Minimum Beta - 300, 700, 1700 Year

M Wind/M Total

Beta

300 Yr MRI
700 Yr MRI
1700 Yr MRI
Midwest & West Reliability Index

Load Ratio [WL/(DL+WL) = 0.5]

<table>
<thead>
<tr>
<th>Traffic Volume</th>
<th>Typical</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT<100</td>
<td>3.03</td>
<td>3.89</td>
<td>3.03</td>
</tr>
<tr>
<td>100<ADT<=1000</td>
<td>3.60</td>
<td>3.89</td>
<td>3.03</td>
</tr>
<tr>
<td>1000<ADT<=10000</td>
<td>3.60</td>
<td>3.89</td>
<td>3.03</td>
</tr>
<tr>
<td>ADT>10000</td>
<td>3.89</td>
<td>3.89</td>
<td>3.03</td>
</tr>
</tbody>
</table>

- **Typical:** Failure could cross travelway
- **High:** Support failure could stop a life-line travelway
- **Low:** Support failure could not cross travelway

Roadway sign supports: Use 10 years (Low)

Load Ratio [WL/(DL+WL) = 1.0]

<table>
<thead>
<tr>
<th>Traffic Volume</th>
<th>Typical</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT<100</td>
<td>2.77</td>
<td>3.62</td>
<td>2.77</td>
</tr>
<tr>
<td>100<ADT<=1000</td>
<td>3.35</td>
<td>3.62</td>
<td>2.77</td>
</tr>
<tr>
<td>1000<ADT<=10000</td>
<td>3.35</td>
<td>3.62</td>
<td>2.77</td>
</tr>
<tr>
<td>ADT>10000</td>
<td>3.62</td>
<td>3.62</td>
<td>2.77</td>
</tr>
</tbody>
</table>

- **Typical:** Failure could cross travelway
- **High:** Support failure could stop a life-line travelway
- **Low:** Support failure could not cross travelway

Roadside sign supports: Use 10 years

ASD with I=1: \(\beta = 3.74 \)

ASD with I=1: \(\beta = 2.69 \)
Impact – Importance of MRI

LRFD Required Resistance Ratios (R_{nT}/R_{n700})

- R_{n300}/R_{n700}
- R_{n1700}/R_{n700}

M Wind/M Total

Ratio

0.60 0.70 0.80 0.90 1.00 1.10 1.20

0 0.60 0.70 0.80 0.90 1.00 1.10 1.20
Impact – LRFD vs ASD

WIND has HIGHER Variability Makes Sense
Calibration Summary

- LRFD Calibrated to Current ASD
 - MRI 300 ~ I=0.87,
 - MRI 700 ~ I=1.00,
 - MRI 1700 ~ I=1.15

- LRFD Provides Adequate Safety as Calibrated to Current ASD (β high enough)

- LRFD Provides More Consistent Safety over the Range of Design than ASD (β more uniform)
Calibration Summary

• LRFD & ASD Result in Same Strength Design for Wind Moment/Total Moment ~ 0.60

• High Mast Pole LRFD Strength ~ 10-15% Higher

• Mast Arm LRFD Strength ~5-8% Lower
Calibration Summary

• Risk Category has Significant Impact
 – High Mast Poles
 • +10% or more for High Risk
 • -10% or more for Low Risk
 – Mast Arm Poles
 • +5% or more for High Risk
 • -5% or more for Low Risk