T-14 Agenda Item No. 11
Section 3, Article 3.4.1; Section 5, Article 5.5.3.2, and Section 6, Articles 6.6.1.2.3, 6.6.1.2.5, and 6.17

- Description of Proposed Revisions:
 - Items #1 and #2: Change Fatigue I load factor from 1.5 to 1.75 and Fatigue II load factor from 0.75 to 0.8. Revise commentary accordingly to explain change
 - Item #3: Revise rebar fatigue equations
 - Item #4 and #5: Revise values in table 6.6.1.2.3-2 and equation C6.6.1.2.3-1 to accommodate the revised load factors
 - Item #6: Modify Table 6.6.1.2.5 to remove the change in number of truck passages above and below a 40’ span length
T-14 Agenda Item No. 14
Section 6, Article 6.6.1.2.3; Section 9, Articles 9.8.3.6.2 & 9.10

• Description of Proposed Revisions:
 • Item #1: Revises Description and figure for Condition 8.1 in Table 6.6.1.2.3-1 as follows:

8.1 Rib to Deck Weld—One-sided 80% (70 60% min) penetration weld with root gap ≤ 0.02 in. prior to welding. Weld throat ≥ rib wall thickness
T-14 Agenda Item No. 14
Section 6, Article 6.6.1.2.3; Section 9, Articles 9.8.3.6.2 & 9.10

• Description of Proposed Revisions:
 • Items #2 & #3: Perform consistent revisions to Article 9.8.3.6.2 on closed ribs for orthotropic decks and the associated commentary.

• Anticipated Effect on Bridges:
 • Proposed revision will improve constructibility and quality on orthotropic deck bridges.
 • Proposed penetration provides more flexibility and less chance of melt-through or burn-through, and less chance of hot cracking.
T-14 Agenda Item No. 15
Section 6, Articles 6.6.1.2.5 and C6.6.1.2.5

- Description of Proposed Revisions:
 - Item #1:
 ➢ Revises Eq. 6.6.1.2.5-4 for checking root cracking as follows:

\[
\frac{(\Delta F)_n - (\Delta F)_n^c}{(\Delta F)_n^c} \leq \frac{0.65 - 0.59 \left(\frac{2a}{t_p} \right) + 0.72 \left(\frac{w}{t_p} \right)}{0.187 \frac{t_p}{t_p}}
\]

\[
(\Delta F)_n = (\Delta F)_n^c \left(\frac{0.61 - 0.56 \left(\frac{2a}{t_p} \right) + 0.68 \left(\frac{w}{t_p} \right)}{0.187 \frac{t_p}{t_p}} \right) \leq (\Delta F)_n^c
\]

➢ Requires equation to be checked where partial penetration groove welds are transversely loaded in tension.
T-14 Agenda Item No. 15
Section 6, Articles 6.6.1.2.5 and C6.6.1.2.5

• Description of Proposed Revisions:
 • Item #2:
 ➢ Adds limits on ranges of data used in the derivation of Eq. 6.6.1.2.5-4 to the commentary; i.e., $2a/t_p$ ranging from 0.30 to 1.1 and w/t_p ranging from 0.30 to 1.0.
 ➢ NEW: “For values of $2a/t_p$ less than 0.3 and/or w/t_p greater than 1.0, the nominal fatigue resistance is equal to the resistance for Detail Category C.”

• Anticipated Effect on Bridges:
 • Ensures that the potential for weld root cracking will be checked for partial penetration groove welds that are transversely loaded in tension.
 • Slightly reduced nominal fatigue resistance for these details.
T-14 Agenda Item No. 17
Section 6, Article C6.10.1.1.1b

• Description of Proposed Revision:
 • Removes table of modular ratios, \(n = E/E_c \), for normal-weight concrete in Art. C6.10.1.1.1b.
 ➢ New equation for \(E_c \) recently added in Article 5.4.2.4.
 ➢ Equation for \(n \) still provided in the specification – allows Engineer to compute \(n \) using desired value of \(E_c \) from Article 5.4.2.4.

• Anticipated Effect on Bridges:
 • Transformed concrete deck will be slightly larger in some cases, particularly for the lower-strength concretes, when the new equation for \(E_c \) is used to calculate \(n \).
T-14 Agenda Item No. 19
Section 6, Articles 6.10.9.1 and 6.10.9.3.3

• Description of Proposed Revisions:
 • Items #1 through #4:
 ➢ Clarify that transverse intermediate stiffeners are required along the girder wherever the factored shear, V_u, exceeds the factored shear resistance, $\phi_v V_n$, for an unstiffened web.
 ➢ Clarify the definitions for a stiffened interior web panel and a stiffened end web panel, and the maximum stiffener spacing requirements that apply to each.
 ➢ Clarify that interior and end web panels that have stiffener spacings exceeding the applicable maximum stiffener spacing requirements are to be treated as unstiffened web panels.
 ➢ Unstiffened end web panels still provide an anchor to the tension field in an adjacent stiffened interior web panel.
T-14 Agenda Item No. 20
Section 6, Articles 6.10.10.1.2 & 6.17

• Description of Proposed Revisions:
 • Items #1 through #3:
 ➢ Increases maximum shear connector spacing from 24.0 inches to 48.0 inches. However, only for web depths >24.0 inches.
 ➢ Adds more descriptive commentary related to the previous and proposed limits.
 ➢ Adds three new references to Article 6.17.

• Anticipated Effect on Bridges:
 • Nothing to the detriment in terms of design. For ABC, precast deck panel construction should be less burdensome, and interferences in the field should be reduced.
Description of Proposed Revisions:

- **Item #1:**
 - Removes 2nd paragraph of Article C6.4.1.
- **Items #2 and #3:**
 - Simplifies Article 6.4.4 on stud shear connectors to refer to the AASHTO/AWS D1.5M/D1.5 Bridge Welding Code.
- **Items #4 through #6:**
 - Creates new Article 6.7.8 on ‘Bent Plates’.
 - Moves current language on bent plates in Article 6.4.1 to the new Article 6.7.8 to increase the visibility/awareness of this language.
- **Item #7:**
 - Increases maximum hole size for bolts greater than or equal to 1\textquotedbl in diameter in Table 6.13.2.4.2-1 to the nominal diameter of the bolt plus 1/8\textquotedbl.
 - Eliminates the need to field ream holes to fit large-diameter hot forged bolts, which have a longitudinal forging seam that interferes with holes 1/16\textquotedbl larger than the bolt diameter.
T-14 Agenda Item No. 30
Section 6, Various Articles (1)

- Description of Proposed Revisions:
 - Revise Section 7: Aluminum Structures. Various changes to content throughout the section are made.
 - New Aluminum Design Manual edition (2015) resulted in the need to update the section
 - Many minor editorial clean-ups included.