Minnesota Bridge Software Usage for Programming, Design, Inspection, and Maintenance

Nick Haltvick, P.E.
Design

1. Design Automation
2. Steel Rating Study
Design Automation

Bridge Design Automation Committee
BDAC - Purpose

- To promote consistent design practice through the development and validation of design tools.
BDAC - Membership

- All design engineers are welcome to participate in committee activities.
- Four to five person “core group” responsible for updating procedure documents and delegating tasks as needed.
BDAC - Services

- Design Sheets
 - Internally developed (MathCAD, Excel, etc.)
 - Determine internal needs
 - QA/QC process for approval
 - Review for specification updates
 - File maintenance, revision logs, and archiving
 - Training
BDAC - Services

- Software Validation
 - Commercial products
 - Documentation of validation process using published examples
 - Internal issues log
 - Internal guidance sheets
B DAC - Services

- File structure
 - Active projects
 - Post-construction
- Digital reference library
- Internal design examples
• TIME!
 – Internal design sheets updated
 – Validating software with new version release
 – Allocating time for designers to develop/maintain
 – Trying to schedule with normal production

• Documentation of modifications to “approved” design sheets
Steel Rating Study

An internal software validation for analysis and rating of steel bridge structures.
SRS - Purpose

- MnDOT LRFD BDM 4.6.2: Repair Projects
- Load Rating completed using LRFR procedures at scoping level AND when project includes:
 - Deck replacements
 - Widenings
 - Superstructure Replacements
 - Significant increases to dead load
 - i.e. deck thickness increases or barrier modifications
SRS - Purpose

List generated from Bridge Data Management Inventory output & plan review

\[I_S = \frac{w_g \tan \theta}{L_S} \]

\[I_C = \frac{15000}{R(n_f + 1)m} \]
SRS - Purpose

<table>
<thead>
<tr>
<th>Row Labels</th>
<th>Count of Status</th>
<th>Replacement</th>
<th>Rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C&S</td>
<td>95</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>neither</td>
<td>41</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S</td>
<td>215</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>#VALUE!</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#DIV/0!</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>441</td>
<td>9</td>
<td>23</td>
</tr>
</tbody>
</table>

- Project Schedule (FY2016 – FY2018)
- Most rated using line girder analysis
SRS - Skewed

\[I_S = \frac{w_g \tan \theta}{L_s} \]

NCHRP 725: Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges Test Bridge ElCSS12
SRS - Curved

\[I_c = \frac{15000}{R(n_f + 1)m} \]

FHWA Steel Design Handbook: Design Example 3” Three-Span Continuous Horizontally Curved Composite Steel-I-Girder Bridge
NHI Course No. 130095: Analysis and Design of Skewed and Curved Steel Bridges with LRFD - Chapter 5 Design Example

Figure 5.1.1 Plan View of the Example I-Girder Bridge
SRS - Current & Upcoming Tasks

• Comparison of section properties, dead and live load forces, deflections
 1. Skewed
 2. Curved
 3. C&S

• Diaphragm forces

• Modelling time
? QUESTIONS ?

BDAC

- Purpose
- Membership
- Services
 - Design Sheets
 - Software Validation
 - Misc.
- Challenges

SRS

- Purpose
- Examples
- Tasks