NCHRP PROJECT 20-7 TASK 395
MASH EQUIVALENCY OF NCHRP REPORT 350 BRIDGE RAILINGS

AASHTO Subcommittee on Bridges & Structures
Technical Committee T-7
“Guardrails & Bridge Rails

Roger P. Bligh, Ph.D., P.E.
Senior Research Engineer
Texas A&M Transportation Institute

Minneapolis, MN
June 27, 2016
RESEARCH OBJECTIVES

- Identify and prioritize bridge railings
- Determine MASH equivalent test levels
- Analyze current bridge rails with respect to MASH
- Assess eligibility and need for retesting
RESEARCH APPROACH

- Task 1: Collect Bridge Rail Information
- Task 2: Assess Analysis Methodologies
- Task 3: Analyze Selected Bridge Rails
- Task 4: Coordinate with Other MASH Implementation Efforts
- Task 5: Prepare FHWA Eligibility Requests
- Task 6: Present Research Findings
- Task 7: Submit Final Report
TASK 1 - COLLECT BRIDGE RAIL INFORMATION

- Identify bridge rails and their relative frequency of use
 - Review FHWA web site
 - Survey State DOTs
 - Almost complete with a thorough questionnaire that will soon be sent to the states and manufacturers

- Categorize and prioritize systems
 - Test Level
 - Material type (steel, concrete, etc.)
SURVEY

- Electronic, On-Line Survey of State DOTs
 - Draft Survey
 - Bridge Rail System Name
 - Standard Drawing
 - Test Specification
 - Test Level
 - Test Documentation
 - Eligibility Status
 - Relative Frequency of Use
 - Your input is needed!!
TASK 2 - ASSESS ANALYSIS METHODOLOGIES

• Assess methodologies previously used/accepted by FHWA
• Develop methodology for evaluating MASH compliance of existing bridge rails
 • Crash tested and/or FHWA eligible railings
• Consider:
 • Previous level of testing
 • MASH impact severity
 • MASH evaluation criteria
NCHRP REPORT 350 IMPLEMENTATION

• Similar issue faced during NCHRP Report 350 Implementation
• May 30, 1997 FHWA Technical Memorandum
 • In-house assessment of crash tested bridge rails
 • NCHRP Report 230
 • AASHTO Guide Specification for Bridge Railings
 • Conservatively assigned railings “approximately equivalent” NCHRP Report 350 test level
 • Review included comparison of impact severity, level of testing performed under earlier criteria, vehicle types used in tests, and impact performance in tests
 • Listing of bridge rail systems
 • Crash test reports, available drawings, and related FHWA letters
REPORT 350 BRIDGE RAIL EQUIVALENCY

<table>
<thead>
<tr>
<th>TESTING CRITERIA</th>
<th>ACCEPTANCE EQUIVALENCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCHRP Report 350</td>
<td>TL-1</td>
</tr>
<tr>
<td></td>
<td>TL-2</td>
</tr>
<tr>
<td></td>
<td>TL-3</td>
</tr>
<tr>
<td></td>
<td>TL-4</td>
</tr>
<tr>
<td></td>
<td>TL-5</td>
</tr>
<tr>
<td></td>
<td>TL-6</td>
</tr>
<tr>
<td>NCHRP Report 230</td>
<td>MSL-1</td>
</tr>
<tr>
<td></td>
<td>MSL-2*</td>
</tr>
<tr>
<td></td>
<td>MSL-3</td>
</tr>
<tr>
<td>AASHTO Guide Specifications</td>
<td>PL-1</td>
</tr>
<tr>
<td></td>
<td>PL-2</td>
</tr>
<tr>
<td></td>
<td>PL-3</td>
</tr>
<tr>
<td>AASHTO LRFD Bridge Specifications</td>
<td>PL-1</td>
</tr>
<tr>
<td></td>
<td>PL-2</td>
</tr>
<tr>
<td></td>
<td>PL-3</td>
</tr>
</tbody>
</table>

* This is the performance level usually cited when describing a barrier as tested under NCHRP Report 230. It is close to a TL-3 but adequate TL-3 performance cannot be assured without a pickup truck test.
FHWA “ACCEPTANCE” GUIDELINES

- May 16, 2000 FHWA Technical Memorandum
- Provided guidance for “acceptance” of bridge railings
 - Pertained to design modification/variation
 - Railing similar in basic geometry and strength to NCHRP Report 350 crash tested design
- AASHTO LRFD Bridge Design Specification
 - Section 13 – Railings
 - Strength analysis – consider all failure modes
 - System, components, connections
 - Geometric analysis – empirical relationships developed from full-scale crash testing experience
- Illustrated example submitted by state DOT
• Analyze existing data to determine if equivalent MASH test levels can be established
 • Supplemented by limited finite element impact simulations
• Evaluate prioritized bridge rails (Task 1) using approved methodology (Task 2)
 • Conservative analysis
 • MASH equivalent test level
 • Crash testing needed
KEY MASH CONSIDERATIONS

- Structural Adequacy
- Rail Height
- Rail Geometry
STRUCTURAL ADEQUACY

- Increased impact severity results in increased impact forces

<table>
<thead>
<tr>
<th>Test</th>
<th>NC HRP 350</th>
<th>MASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-10</td>
<td>-</td>
<td>+206%</td>
</tr>
<tr>
<td>3-11</td>
<td>-</td>
<td>+13%</td>
</tr>
<tr>
<td>4-12</td>
<td>-</td>
<td>+56%</td>
</tr>
</tbody>
</table>

- Impact forces vary with test level and rail height
 - TL-2: 27 kips → ?
 - TL-3: 54 kips → 70 kips?
 - TL-4: 54 kips → 68 – 80 kips

- AASHTO LRFD Bridge Design Specification analysis methodologies applicable
 - Conservative in nature
RAIL HEIGHT

- Minimum height for vehicle stability varies with test level

<table>
<thead>
<tr>
<th>Test Level</th>
<th>NC HRP 350*</th>
<th>MASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

* AASHTO LRFD Bridge Design Specifications, Section 13
RAIL GEOMETRY

- Rail geometry effects vehicle-barrier interaction
 - Post setback distance
 - Vertical clear opening
 - Contact surface area
- Increased impact severity increases snagging potential
- Applicability of AASHTO LRFD Bridge Design Specification questionable
 - Different vehicles
 - Different impact conditions

Figure A13.1.1-2—Potential for Wheel, Bumper, or Hood Impact with Post
TASK 4 - COORDINATION WITH OTHER MASH IMPLEMENTATION EFFORTS

• Coordinate with pooled fund efforts and other research initiatives
 • Collect all available information
 • Share information to avoid duplication of effort
 • Work toward compiling information on all MASH devices

• Roadside Safety Pooled Fund Program
 • MASH Implementation Coordination Effort
 • Develop and maintain databases for MASH implementation needs and testing

• Research Efforts
 • Midwest States Pooled Fund
 • NCHRP
 • Other
TASK 5 – PREPARE FHWA ELIGIBILITY REQUESTS

• Prepare necessary documentation and rationale for submission of eligibility requests to FHWA
• Selected, prioritized bridge rail systems
• Methodology and rationale should be applicable to other rail systems
TASK 6 – PRESENT RESEARCH FINDINGS

- Present research findings
 - AASHTO Subcommittee on Bridges and Structures, Technical Committee T-7 “Guardrail and Bridge Rail”
 - AASHTO Technical Committee on Roadside Safety (TC RS)
TASK 7 – SUBMIT FINAL REPORT

• Prepare and submit final report
• Project details, methodology, analyses results, findings, and recommendations
 • Test level equivalency
 • FHWA eligibility requests
 • Additional crash testing needs
TIME SCHEDULE

<table>
<thead>
<tr>
<th>Task</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Task 1. Review and Prioritize Bridge Rails</td>
<td></td>
</tr>
<tr>
<td>Task 2. Develop Analysis Methodology</td>
<td></td>
</tr>
<tr>
<td>Task 3. Analyze Bridge Rails</td>
<td></td>
</tr>
<tr>
<td>Task 4. Assist with MASH Coordination</td>
<td></td>
</tr>
<tr>
<td>Task 5. Prepare Eligibility Requests</td>
<td></td>
</tr>
<tr>
<td>Task 6. Present Findings</td>
<td></td>
</tr>
<tr>
<td>Task 7. Prepare and Submit Final Report</td>
<td></td>
</tr>
</tbody>
</table>
QUESTIONS?

ROGER BLIGH, PH.D., P.E.
R-BLIGH@TTI.TAMU.EDU