Guidelines for Historic Bridge Rehabilitation and Replacement

NCHRP Project 25-25/Task 19

May 21, 2008

Historic Bridge Guidelines
Historic Bridge Rehabilitation and Replacement - NCHRP Project

- Prepared by Lichtenstein Consulting Engineers, Inc., and
- Parsons Brinckerhoff Quade & Douglas, Inc.
- March 2007
Project Objective

To develop guidelines for:

- Determining conditions when historic rehabilitation is prudent and feasible
- Using engineering and environmental data and judgments for historic bridges
- Upgrading historic bridges to current design and safety requirements
- Assessing effect of remedial actions on historic significance
Why Preserve Historic Bridges?

- National Historic Preservation Act of 1966
- Section 4f, US DOT Act of 1966
- SCOE Directed This Study be done to attempt to establish nationally applicable guidelines that is balanced and consistent
- Many states have excellent practices, but few have standard written protocols

May 21, 2008

Historic Bridge Guidelines
Preserve or Replace?

4 Step Evaluation

1. Understand what makes it historic
 - Is the bridge of average or high historic value?
 - Can members be changed without adversely affecting historic significance?

2. Applying Structural and Functional Considerations
 - Analysis of structural condition and waterway adequacy to determine potential for rehabilitation
 - Load capacity analysis
 - Analysis of geometry and safety features
Preserve or Replace?
4 Step Evaluation

- 3. Historic and Environmental Considerations
 - Assess common issues.
 - Approaches for addressing issues

- 4. Applying Decision Making Thresholds
 - Define feasible and prudent
 - Apply thresholds based on combinations of the 3 basic types of adequacy: Load capacity, Condition, Geometry
Rehab/Replacement Thresholds based on Adequacy Types

<table>
<thead>
<tr>
<th>NBI Ratings = 3 or 4</th>
<th>Load-Carrying Capacity</th>
<th>Geometry</th>
<th>Rehabilitation Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity ≥ design requirements or Capacity sufficient to meet acceptable lower design requirements</td>
<td>Bridge can be widened or Approach deficiencies can be improved without destroying what makes bridge significant</td>
<td>Bridge may have potential</td>
<td></td>
</tr>
<tr>
<td>Bridge roadway width equal to approaches but does not meet design requirements or No site specific safety problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge has no ability to be widened or substandard geometry cannot be improved or Bridge is too narrow for current use, has inadequate approach geometry and cannot be improved in cost effective manner or Bridge cannot be made adequate without destroying what makes bridge significant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity < design requirements but able to meet a lower capacity requirement in a cost effective manner</td>
<td>Bridge can be widened or Approach deficiencies can be improved without destroying what makes bridge significant</td>
<td>Bridge may have potential</td>
<td></td>
</tr>
<tr>
<td>Bridge roadway width equal to approaches but does not meet design requirements or No site specific safety problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge has no ability to be widened or substandard geometry cannot be improved or Bridge is too narrow for current use, has inadequate approach geometry and cannot be improved in cost effective manner or Bridge cannot be made adequate without destroying what makes bridge significant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity < design requirements and Unable to meet capacity requirements in a cost effective manner</td>
<td>Bridge can be widened or Approach deficiencies can be improved without destroying what makes bridge significant</td>
<td>Bridge is unlikely to have potential</td>
<td></td>
</tr>
<tr>
<td>Bridge roadway width equal to approaches but does not meet design requirements or No site specific safety problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge has no ability to be widened or substandard geometry cannot be improved or Bridge is too narrow for current use, has inadequate approach geometry and cannot be improved in cost effective manner or Bridge cannot be made adequate without destroying what makes bridge significant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2b. Rehabilitation potential for structures with NBI Ratings = 3 or 4.
Next Steps

- NCHRP Publish Historic Bridge Guidelines **DONE**
- Present to Appropriate Groups at
 - FHWA
 - AASHTO – SCOBS vote on Ballot Resolution
 - State DOT’s
- States implement Guidelines by incorporating into Design Guidelines