Fiber-Reinforced Polymer (FRP)

Composite Bridge Decking for Moveable Bridges

A Highways for LIFE Project

Jerome S. O’Connor, PE
Delivering innovative technology.

20 yr. DOT Experience

10 yr. Research at Buffalo

Technology Deployment

Amjad Aref, UB
NYSDOT Research
Highways for Life (HfL)
Technology Partnerships Program

“... The purpose of the Technology Partnership Program is to work with the highway construction industry to accelerate the adoption of promising innovations. “
Composite Bridge Decking for Moveable Bridges

Needs

- Light-weight
- Solid surface (protect superstructure, capture runoff, smooth & quiet ride)
- No rust or fatigue issues
- Long term durability (e.g. wearing surface bond and skid resistance)
- Affordable cost
- Adaptable to different situations
Problem

- There are few good alternatives for lightweight decks that are needed on moveable bridges. The original design on many bridges called for open steel grating but this is no longer considered a prudent choice.
- FRP decking is light but proprietary systems have limited competitiveness.
- There have been some troubles with wearing surfaces.
Design Approach -
Priority of Design Parameters

1. Performance
 - Strength - given
 - Stiffness – very important because it affects serviceability issues and long term durability (cracking/spalling of wearing surface, deterioration of attachment detailing and panel-panel joints)

2. Constructability

3. Weight

4. Cost

5. Speed of installation
Composite Bridge Decking for Moveable Bridges

Description
Composite Bridge Decking for Moveable Bridges

d=4 ½”
Composite Bridge Decking for Moveable Bridges
Delivering innovative technology.

Composite Bridge Decking for Moveable Bridges
Composite Bridge Decking for Moveable Bridges

<table>
<thead>
<tr>
<th>Panel type</th>
<th>Weight</th>
<th>Weight w/ thin wearing surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty</td>
<td>16 psf</td>
<td>20 psf</td>
</tr>
<tr>
<td>Alternating E-grout</td>
<td>27 psf</td>
<td>31 psf</td>
</tr>
<tr>
<td>E-grout in top cells</td>
<td>24 psf</td>
<td>28 psf</td>
</tr>
<tr>
<td>Empty but enhanced with carbon fiber</td>
<td>16 psf</td>
<td>20 psf</td>
</tr>
</tbody>
</table>

Depth: 4 7/8”
Composite Bridge Decking for Moveable Bridges

“Details”

- Connection to supporting steel
- Cross slope and haunch provisions
- Field Joint between panels
- Wearing surface
- Bridge railing
Cross Slope & Haunch

Pre-fab

5/8” STAINLESS STEEL HOLLO-BOLT

T/ EXIST. STEEL REF. ELEV. 0'-0"

FASTENING CLIP

EXISTING W21 GIRDER
Wearing Surface

1st course: 3/8” stone shop applied w/ adhesive

2nd course: field applied for a total depth of 5 3/8”
Composite Bridge Decking for Moveable Bridges

Field Joints

Seal with aluminum tape

Fill on-site with E-grout
Railing
Composite Bridge Decking for Moveable Bridges

Analysis / Testing
Composite Bridge Decking for Moveable Bridges

- **Coupon Testing**
- **Subcomponent Testing**
- **3'x10' Test Panels**
- **Proof-Test Details**
- **Load Test**
- **NDE/SHM**
Composite Bridge Decking for Moveable Bridges

Material Testing

Tube Testing

Panel Testing
 • Flexure
 • Fatigue
 • Ultimate
 • Shear
 • Local deformation
 • Fire resistance
Composite Bridge Decking for Moveable Bridges

3 Panel Types
Composite Bridge Decking for Moveable Bridges

Fatigue test

Fatigue Testing
Flexure Testing (Positive & Negative Bending Moment)
10’ span
Composite Bridge Decking for Moveable Bridges

Wide side down

Wide side up

Similar response in + and - bending
Consistency among Panels
(empty panels at 10’ span)
Composite Bridge Decking for Moveable Bridges

Summary of Empty Panel Tests

10’ span

<table>
<thead>
<tr>
<th>Panel ID No.</th>
<th>Instrument used</th>
<th>Cross-section position</th>
<th>Max or Failure Load (kips)</th>
<th>Displacement at max or failure load (inch)</th>
<th>Flexural stiffness k (kip/inch)</th>
<th>Tested date</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>String pot & LVDT & 110 kips load cell</td>
<td>WSU, WSD</td>
<td>20</td>
<td>1.38, 1.39</td>
<td>14.49, 14.4</td>
<td>05/23/2012</td>
</tr>
<tr>
<td>#2</td>
<td>String pot & LVDT & 110 kips load cell</td>
<td>WSD</td>
<td>20</td>
<td>1.37</td>
<td>14.72</td>
<td>05/22/2012</td>
</tr>
<tr>
<td>#3</td>
<td>String pot & LVDT & 110 kips load cell</td>
<td>WSD</td>
<td>20</td>
<td>1.44</td>
<td>14.32</td>
<td>05/22/2012</td>
</tr>
<tr>
<td></td>
<td>String pot & 110 kips load cell & 2 strain gages</td>
<td>WSD</td>
<td>61 (fail) crush at top</td>
<td>4.45</td>
<td>13.91</td>
<td>05/24/2012</td>
</tr>
<tr>
<td>#4</td>
<td>String pot & LVDT & 110 kips load cell & 1 strain gage</td>
<td>WSD</td>
<td>20</td>
<td>1.4</td>
<td>14.05</td>
<td>05/22/2012</td>
</tr>
</tbody>
</table>
Delivering innovative technology.

Composite Bridge Decking for Moveable Bridges

Failure Mode
Composite Bridge Decking for Moveable Bridges

Empty Panel taken to Failure: 10-ft span
Composite Bridge Decking for Moveable Bridges

Panel testing at 2-ft c.c. support
Composite Bridge Decking for Moveable Bridges

Panel #5-epoxy-WSD

Panel #6-epoxy-WSU
Composite Bridge Decking for Moveable Bridges

Summary
Penn State Conclusions

1. Tubes are very elastic.
2. Alternating epoxy grout increases panel stiffness by 45%.
3. Symmetrical section is good for + & - bending.
4. Failure mode of unfilled section is compressive failure of tubes. Panel partially recovers with lessened capacity after crushing.
5. Fatigue results in very small loss of stiffness.
Composite Bridge Decking for Moveable Bridges

Summary

1. Strength demands are easily met.
2. Empty section is sufficiently stiff for close stringer spacing. (2’ to 3’ c.c.)
3. Alternatives to grout are available to provide stiffness.
4. 5 3/8” deck weighs 16 psf w/o grout or wearing surface.
5. Pliable adhesive ensures bond of wearing surface.
6. Options exist for attaching and providing cross slope.
7. Low modulus epoxy grout is used to prevent cracking at field joints.
Composite Bridge Decking for Moveable Bridges

Next Steps

1. Proof of Concept Deck Installation
2. Compare field data to FEA

Future Demonstration Project